Expectation and Duration at the Effective Lower Bound

Tom King Federal Reserve Bank of Chicago¹

May 3, 2018

May 3, 2018

¹The views expressed here do not represent those of the Chicago Fed or the Federal Reserve System.

Introduction

This paper studies

- the impact of duration exposures and short-rate expectations,
- in a structural, equilibrium model of the yield curve,
- with an effective lower bound.

The main interest is in analyzing the effects of alternative monetary policy tools at the ELB.

"Structural" part of the model:

- Risk-averse arbitrageurs
- Vayanos & Vila (2009); Greenwood & Vayanos (2014); King (2015)

ELB:

- Shadow-rate process
- Kim & Singleton (2012); Krippner (2012); Wu & Xia (2015)

Factor loadings change qualitatively and quantitatively by introducing the ELB.

Introduction

Some prima facie evidence that this is important...

Extend Greenwood-Vayanos regressions through 2015, allowing break in 2008.

	Independent variables						1. A	
	WAM of Treas. debt				1y yield			
Dep. Var.	Pre-ELB	ELB	Break t-stat	Pre-ELB	ELB	Break t-stat	K-	
5y yield	0.140 (0.095)	0.002 (0.101)	-2.17	0.842*** (0.050)	2.271*** (0.785)	1.84	0.951	
10y yield	0.221* (0.121)	0.058 (0.116)	-2.25	0.736*** (0.060)	3.028** (1.203)	1.92	0.901	
15y yield	0.261* (0.133)	0.110 (0.126)	-2.05	0.688*** (0.065)	2.966** (1.276)	1.80	0.870	

Independent variables							A .41:	
	WAM of Treas. debt					Adj. D2		
Dep. Var.	Pre-ELB	ELB	Break t-stat		Pre-ELB	ELB	Break t-stat	N-
5y yield	0.102* (0.373)	-0.002 (0.060)	-2.57		0.901*** (0.032)	1.910*** (0.217)	4.74	0.981
10 y y ield	0.187** (0.094)	0.053 (0.088)	-2.25		0.794*** (0.048)	2.328*** (0.429)	3.61	0.942
15y yield	0.227** (0.109)	0.113 (0.108)	-1.62		0.746*** (0.056)	2.167*** (0.537)	2.68	0.915

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Why does this happen in the model?

term premium \approx risk aversion \times duration exposure \times interest-rate vol

• ELB dampens interest-rate vol:

- Yields become less responsive to duration.
- Shadow rate induces changes in term premia.

- Illustrate basics in a one-factor model.
- Extend the model to allow for stochastic bond supply.
- Calibrate to long-run U.S. yield moments and solve it numerically.
- Show that it matches:
 - Conditional moments at the ELB.
 - The regression coefficients just presented.
 - Event-study evidence on QE.
- Look briefly at how the ELB affects factor loadings and other results.
- Use the model to examine the effectiveness alternative unconventional policies.
 - Feed the model shadow-rate and bond-supply shocks that resemble the Fed's actions.
 - Check the contribution of each.

< 口 > < 同 > < 三 > < 三

Model setup - constant bond supply

Arbitrageurs solve

$$\max_{x_t(\tau) \forall \tau} \mathsf{E}_t \left[d \mathcal{W}_t \right] - \frac{\mathsf{a}}{2} \mathsf{var}_t \left[d \mathcal{W}_t \right]$$

subject to

$$dW_{t} = \int_{0}^{T} x_{t}\left(\tau\right) \frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}} d\tau + \left(W_{t} - \int_{0}^{T} x_{t}\left(\tau\right) d\tau\right) r_{t} dt$$

where W_t is wealth, $x_t(\tau)$ is bond holdings at maturity τ , $P_t^{(\tau)}$ is the bond price at maturity τ , and r_t is the short rate.

The government supplies bonds ζ at all maturities. Equilibrium is determined by

$$x_{t}(\tau) = \zeta$$

for all τ .

< ロ > < 同 > < 三 > < 三

Equilibrium

$$\mathbf{E}_{t}\left[\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}}\right] = r_{t}dt + a \int_{0}^{T} \zeta \operatorname{cov}_{t}\left[\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}}, \frac{dP_{t}^{(s)}}{P_{t}^{(s)}}\right] ds$$

Assume the shadow-rate process:

$$r_t = \max \left[\hat{r}_t, b \right]$$
$$d\hat{r}_t = \kappa (\mu - \hat{r}_t) dt + \sigma dB_t$$

Then

$$\underbrace{\mathbf{E}_{t}\left[\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}}\right] - r_{t}dt}_{\text{risk premium}} = \zeta \left(a\sigma^{2}A_{t}^{(\tau)}\int_{0}^{T}A_{t}^{(s)}ds\right)$$

where $A_t^{(\tau)}$ is the sensitivity of the τ -maturity price to \hat{r}_t .

・ロト ・回ト ・ヨト ・ヨト

If $b = -\infty$, the model is affine and

$$A_t^{(\tau)} = \int_0^\tau e^{-\kappa s} ds = \frac{1 - e^{-\kappa \tau}}{\kappa}$$

This is the Greenwood-Vayanos-Vila one-factor model.

At each maturity:

- Return volatility is constant.
- Risk premium is constant.
- Sensitivity to bond supply is constant.

• • • • • • • • • • • •

Factor loadings

Affine case, $b = -\infty$:

$$A^{(\tau)} = \int_{0}^{\tau} e^{-\kappa s} ds$$

Shadow-rate case, $b > -\infty$:

$$A_t^{(au)} pprox \int\limits_0^ au e^{-\kappa s} \Phi_t^{(s)} ds$$

where $\Phi_t^{(s)} = \Pr_t [\widehat{r}_{t+s} > b].$

Note:

- $A_t^{(\tau)}$ is strictly increasing in \hat{r}_t .
- Lower \hat{r}_t means lower volatility, expected returns, and supply sensitivity.
- The affine GVV model is a limiting case that holds when the ELB never binds.
- The result is not exact because now term premia depend on $\widehat{r_t}$ too.

ヘロト 人間ト 人団ト 人団ト

Now let there be a stochastic bond supply $s_t(\tau)$ at each maturity.

Following Greenwood et al. (2015), reduce bond supply to a single factor:

$$egin{aligned} & s_t\left(au
ight) = \zeta + \left(1 - rac{2 au}{T}
ight)eta_t \ & eta_t = \phi_etaeta_{t-1} + e_t^eta & e_t^eta \sim extsf{Niid}\left(0, \sigma_eta
ight) \end{aligned}$$

Maturity distribution moves in a see-saw pattern in response to shocks to β_t .

(The shape of the distribution is not of major importance.)

イロト イヨト イヨト イヨ

Stochastic bond supply

The WAM of outstanding debt is

$$WAM_{t} \equiv v \frac{\int _{0}^{T} \tau s_{t}(\tau) d\tau}{\int _{0}^{T} s_{t}(\tau)_{t} d\tau} = vT(\frac{1}{2} - \frac{1}{6\zeta}\beta_{t})$$

where v is the length of one period, in years.

Outstanding 10-year equivalents are

$$\%\Delta 10 Y E_{t} \equiv \frac{\frac{v}{10} \int \tau s_{t}(\tau) d\tau}{\frac{\tau}{10} \int \tau s_{t-1}(\tau) d\tau} = -\frac{\Delta \beta_{t+h}}{3\zeta - \beta_{t}}$$

・ロト ・回ト ・ヨト

Bond supply				Short rate				
Т	κ_{β}	σ_{β}	ζ	μ	ĸ	σ	Ь	а
60	0.021	0.20	0.37	4.9%	0.019	0.77%	0.17%	0.15

• Using data since 1971, I match:

- the annual autocorrelation of Treasury WAM
- the unconditional mean and std. dev. of the 3M and 10Y yield
- the unconditional correlation between the 3M and 10Y yield
- the mean 3M yield during the ELB period
- Model is solved numerically using an iterative projection method.

• • • • • • • • • • • • •

Evidence on the model's fit

Short rate below 0.68%

			Slopes (to 3m)			
	% of obs.	3m rate	2Y	5Y	10Y	15Y
Conditional means						
Data	16%	0.2%	0.3%	1.3%	2.5%	3.1%
Shadow-rate model	15%	0.2%	0.4%	1.2%	2.4%	3.5%
Affine Model – base calibration	15%	-1.3%	0.7%	1.8%	3.4%	4.5%
Affine Model – recalibrated	10%	-0.9%	0.7%	1.8%	3.3%	4.5%
Conditional standard deviations						
Data		0.1%	0.3%	0.6%	0.8%	0.8%
Shadow-rate model		0.2%	0.3%	0.7%	1.1%	1.4%
Affine Model – base calibration		1.7%	0.3%	0.7%	1.3%	1.7%
Affine Model - recalibrated		1.5%	0.3%	0.7%	1.2%	1.5%

Short rate above 0.68%

			Slopes (to 3m)			
	% of obs.	3m rate	2Y	5Y	10Y	15Y
Conditional means						
Data	84%	6.1%	0.5%	0.9%	1.3%	1.5%
Shadow-rate model	85%	6.0%	0.3%	0.7%	1.3%	1.8%
Affine Model – base calibration	85%	6.0%	0.3%	0.7%	1.2%	1.7%
Affine Model – recalibrated	90%	5.9%	0.3%	0.7%	1.3%	1.8%
Conditional standard deviations	1					
Data		3.1%	0.9%	1.3%	1.6%	1.7%
Shadow-rate model		3.2%	0.3%	0.8%	1.5%	1.9%
Affine Model – base calibration		3.2%	0.3%	0.8%	1.5%	2.0%
Affine Model – recalibrated		3.0%	0.3%	0.8%	1.4%	1.8%
						≣

Tom King Federal Reserve Bank of Chicago Expectation and Duration at the Effective Lower Boun

Evidence on the model's fit

Model matches regression results on the effects of bond supply.

• Coefficient on WAM holding 2Y yield constant:

	Data	a	Model		
	above ELB at ELB		$\widehat{r} = 5\%$	$\widehat{r} = -2\%$	
5Y	0.10	0.00	0.06	0.03	
10Y	0.19	0.05	0.14	0.10	
15Y	0.23	0.11	0.19	0.15	

• Coefficient on 2Y yield holding WAM constant:

	Data	a	Model		
	above ELB at ELB		$\widehat{r} = 5\%$	$\widehat{r} = -2\%$	
5Y	0.90	1.9	0.90	2.0	
10Y	0.79	2.3	0.70	2.5	
15Y	0.75	2.2	0.64	2.4	

イロト イヨト イヨト イヨト

Factor loadings in the shadow-rate model

- In an affine model, factor loadings are constant.
- In the nonlinear model, they are state-dependent.

- The sensitivity to both factors is quantitatively attenuated by the ELB.
- The \hat{r}_t loadings change qualitatively, reversing their order across maturities.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Factor loadings in the shadow-rate model

A. $\hat{r}_t = 5.2\%$

B. $\hat{r}_t = -2.7\%$

May 3, 2018 16 / 22

Effects of shadow-rate shock on yield curve components

Impact of a one-standard-deviation shock to \hat{r}_t from different initial values:

• At the ELB:

- Overall effects are smaller.
- Effects are increasing, not decreasing, across maturities.
- Effects on the term premium are important.

Assessing unconventional monetary policy

To study the effects of actual Fed policy in this model, I calculate shocks that correspond to what the Fed actually did:

• Shadow rate shocks - kept r_t at the ELB for 7 years.

A. Shadow rate

- Fed balance sheet shocks removed 21% of government-backed duration.
 - These are assumed to be less persistent than the β_t shocks above, but this makes little difference.

Consider a set of trajectories that are consistent with these observations:

B. %Change in 10-year equivalents

Cumulative yield-curve responses in model sims

Adding up the yield-curve surprises (pseudo event study):

A. Spot yield curve

B. Forward rate curve

- Magnitude is roughly consistent with the cumulative effects of unconventional policy implied by event studies.
- Model captures the "hump shaped" forward-curve response noted by Rogers et al. (2014) and others.

Decomposition of yields w/r/t unconventional policy shocks

	Shadow-1	ate shocks	Fed balance- sheet shocks		
Maturity [1]	Expectations component [2]	Term premium component [3]	Term premium component [4]	Interaction [5]	Total [6]
2 years	-59	-22	-13	7	-90
	(-82, -39)	(-25, -16)	(-14, -12)	(5, 8)	(-116, -63)
5 years	-90	-51	-30	12	-160
	(-106, -69)	(-52, -47)	(-31, -26)	(9, 14)	(-177, -135)
10 years	-102	-70	-47	12	-207
	(-109, 91)	(-76, -62)	(-50, -41)	(8, 16)	(-211, -199)
15 years	-98	-72	-57	10	-215
	(-100, -92)	(-82, -63)	(-60, -49)	(7, 14)	(-219, -210)

- Shadow-rate shocks account for over 75% of the effects of unconventional policy on long-term yields.
- About 1/3 of this effect comes from the effects on term premia through reduced volatility.

Relative efficacy of different tools

Size of β shock needed to equate to a -25bp \hat{r} shock:

Balance sheet is *relatively* more effective when shadow rate is negative and duration is high.

イロト イヨト イヨト イヨ

- Simple no-arbitrage model of bond portfolio choice w/shadow rate.
- Captures both forward guidance/signaling and duration channel of QE.
- At the ELB, things change dramatically:
 - Effects of both types of shocks are attenuated by the ELB.
 - Forward guidance has effects on term premia at the ELB that don't exist elsewhere.
- Consequently, the effects of unconventional monetary policy at the ELB may not be well described by
 - Empirical estimates from pre-ELB data
 - Theoretical models that assume linearity
- Simulations suggest that communications about future short rates were far more important for yields than was duration removal during the ELB period.

< ロ > < 同 > < 三 > < 三