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Abstract

With risk-averse arbitrageurs and an effective lower bound on nominal rates, nonlinear interactions
among short-rate expectations, bond supply, and term premia emerge in equilibrium. These in-
teractions, which are absent from affine models, help explain the observed behavior of the yield
curve near the ELB, including evidence about unconventional monetary policy. The impact of both
short-rate expectations and bond supply are attenuated at the ELB. However, in simulations of the
post-crisis experience in the U.S., shocks to investors’ duration-risk exposures have much smaller
effects than shocks to the anticipated path of short rates. The latter shocks matter, in part, because
of the reduction in interest-rate volatility associated with a longer expected stay at the ELB—a
novel channel of unconventional policy.
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1. Introduction

Over the last decade, fixed-income markets have witnessed a combination of two extraordinary
circumstances: massive changes in the quantity and structure of safe debt—including large-scale
purchases of such debt by central banks—and the decline of short-term interest rates to their
effective lower bound (ELB). This paper studies how these two phenomena interact in an equilibrium
model of arbitrage-free bond pricing.

To see empirically that the ELB may be important for the relationship between interest rates
and debt supply, the top panel of Table 1 reports regressions of long-term yields on the weighted-
average maturity of outstanding Treasury debt (WAM) and the one-year Treasury yield. The data
are monthly, from 1971 through 2015. Using interactive dummies, I allow the coefficients on both
variables to change after the ELB was reached in December 2008, but otherwise the regressions are
identical to those of Greenwood and Vayanos (2014) (whose sample ended in 2007). Indeed, column
2 replicates the main result of that paper: long-term yields were significantly positively related to
the duration risk held by investors in the pre-ELB period. A one-year increase in WAM pushed the
10-year yield up by 22 basis points in this sample, and, consistent with longer-term bonds having
greater duration exposure, the coefficients were higher for longer maturities.

As column 3 shows, those coefficients all fall substantially and lose statistical significance during
the ELB period. Despite the relatively few observations at the ELB, the t statistics reported in
column 4 show that the declines in the coefficient values are significant.1 The relationships between
short- and long-term yields also change at the ELB, as shown in columns 5 through 7. Prior to
2008, the coefficients on the one-year yield were less than 1 and were monotonically decreasing in
the maturity of the dependent variable. At the ELB, the coefficients rise above 2, with the 10-
and 15-year yields now being more sensitive than the 5-year yield is. Again, t tests show that
the differences across the two periods are statistically significant.2 The remaining panels of the
table show that the shifts in both sets of coefficients are robust to using the maturity-weighted
debt-to-GDP ratio in place of WAM and the two-year yield in place of the one-year.

These results suggest important changes in the behavior of the yield curve and its relationship
to Treasury supply at the ELB. But what theoretical reasons do we have to expect such changes?
I argue that at least three nonlinear mechanisms may be at work:

1. An increase in the quantity of longer-term bonds that investors hold raises the duration risk
of their portfolios by an amount that depends directly on interest-rate volatility. Interest-rate
volatility is lower when the short-rate distribution is truncated. Thus, if term premia are
increasing in the amount of duration risk held by investors, the effects of bond supply will be
damped at the ELB.

2. Interest-rate volatility moves together with short-rate expectations at the ELB because an
increase in the length of time that the ELB is expected to bind reduces near-term uncertainty
about short rates.3 If term premia depend on this uncertainty, changes in rate expectations
will induce changes in term premia at the ELB.

1The standard errors are calculated using the Newey and West (1987) procedure, with 36 lags, again following
Greenwood and Vayanos (2014).

2Gilchrist et al. (2015) document similar changes in the relationship between shorter- and longer-term yields at
the ELB.

3Hattori et al. (2016) show that accommodative monetary-policy announcements during the ELB period caused
declines in implied interest-rate volatility across the term structure.
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3. At the ELB, near-term rate expectations are constrained and are unlikely to move much in
response to shocks. Consequently, changes in expectations will have relatively larger effects
on medium- and long-term yields.

To formalize and quantify these possibilities, I incorporate the ELB into a structural model
of bond pricing in the style of Vayanos and Vila (2009). In this type of model, the marginal
investors are arbitrageurs with limited risk-bearing capacity. When they are given more long-term
bonds to hold, the duration risk of their portfolios rises and they demand higher risk premia—a
phenomenon sometimes known as the “duration channel” of bond supply. Many recent empirical
studies on the effects of duration shocks have explicitly pointed to this framework for motivation and
interpretation,4 and other papers have extended and applied it in various ways.5 Although those
models have been useful for understanding the relationships between bond supply and bond yields,
they have almost exclusively been developed under the assumption that the short-term interest rate
follows a linear process. The three arguments just mentioned, together with the evidence in Table
1, suggest that the nonlinearity associated with the ELB may induce first-order changes in the
yield curve’s behavior. The situation in which the ELB binds is particularly important to consider
because central banks have typically sought to exploit the duration channel through long-term bond
purchases only after they have cut their traditional policy rates close to zero.

To model the ELB, I generalize the standard affine process for the short-term interest rate
in Vayanos and Vila (2009) and its followers to a “shadow rate” process, following the use of
that device in the recent empirical term-structure literature, such as Kim and Singleton (2012),
Krippner (2012), and Wu and Xia (2016).6 When the shadow rate is below the ELB, shocks to
its value correspond to changes in investor beliefs about the length of time the ELB is expected to
bind. Thus, they may capture both explicit forward guidance about the short-term interest rate
and the “signaling channel” of asset purchases, through which expansions of the central bank’s
balance sheet might be viewed as a commitment to keep rates near zero for a longer time.7

I show analytically that allowing for the ELB in this way endogenously gives rise to the three
nonlinear phenomena discussed above. Furthermore, when parameterized to match the uncondi-
tional moments of Treasury yields since 1971, the model delivers a number of quantitatively accurate
results: it replicates the basic features of the yield curve when the short rate is close to zero; it
produces conditional elasticities similar to those reported in Table 1; and, when subjected to shocks
that approximate the Federal Reserve’s unconventional monetary policy over the ELB period, it
implies both a cumulative yield-curve impact similar to what event studies suggest and a hump
shape in the forward curve that matches the pattern observed in those studies. All of these em-
pirical successes depend crucially on the nonlinear mechanisms that emerge endogenously in the

4E.g., Gagnon et al. (2011), Joyce et al. (2011), Swanson (2011), Krishnamurthy and Vissing-Jorgensen (2011),
D’Amico and King (2013).

5E.g., Hamilton and Wu (2012), Greenwood and Vayanos (2014), King (2015), Altavilla et al. (2015), Greenwood
et al. (2015b), Haddad and Sraer (2015), Hayashi (2016), Malkhozov et al. (2016).

6Bauer and Rudebusch (2014) argue that the shadow-rate specification does a good job of capturing yield-curve
dynamics near the ELB, greatly outperforming traditional affine models. Notably, however, this literature has so far
been dominated by atheoretical term structure models. This paper is among the first to incorporate a shadow-rate
process into a structural model of the yield curve.

7Woodford (2012), Bauer and Rudebusch (2014), and Bhattarai et al. (2015) argue for the importance of the
signaling channel. As noted by Swanson (2017), because many announcements of asset purchases were accompanied
by changes in the FOMC’s communications about future short rates, it is impossible to distinguish empirically
between the the effects of the signaling channel and those of forward guidance.
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model. Consequently, comparable affine models, which ignore the ELB, cannot generally match
these features of the data.

Having thus validated the model, I use it to address two quantitative questions. First, I ask
through which channel unconventional monetary-policy shocks had their largest effects. The answer
is that, given the magnitude of the observed shocks, changes in the expected path of the short rate
were responsible for at least half of the cumulative downward shift in the yield curve during the ELB
period. In addition, at longer maturities, about one-third of the total decline in yields is explained
by the term-premium effects associated with reduced short-rate uncertainty at the ELB—a channel
of unconventional policy that has been overlooked by previous literature. The bond-supply shocks
account for less than 25% of the total decline in the ten-year yield, and at shorter maturities their
contribution is even smaller. In other words, the model suggests that the duration channel of
asset purchases was considerably less important than implicit or explicit forward guidance about
the path of short-term rates.

Second, I ask the model whether the relative effectiveness of the two shocks changes in different
environments. I find that bond-supply shocks are most powerful, relative to shadow-rate shocks,
when the shadow rate is deeply negative and the amount of duration held by the market is high.
In this situation, the efficacy of both types of shocks is attenuated because of the damping effects
associated with the ELB, but the attenuation is greater for the shadow-rate shocks. A negative
shadow rate and a high quantity of market duration are precisely the conditions under which most
Federal Reserve asset purchases were conducted. Thus, even though those purchases appear to have
had only modest effects through the duration channel, their use could have been consistent with
the Fed optimizing across its policy tools in the ELB environment.

This paper is related to several others in the recent literature. As noted above, a number of
studies have used variants of the Vayanos-Vila (2009) framework to analyze the effects of fluctuations
in bond supply in a linear environment. Hamilton and Wu (2012) briefly considered a version in
which, once the short rate reached the ELB, investors believed that it would stay there with an
exogenously given probability. However, because that probability was assumed to be constant, their
model did not contain a mechanism for signaling or forward guidance. In addition, away from the
ELB it priced bonds as if the ELB did not exist. Thus, their model lacked the key nonlinearities
and interactions that drive most of my results.

Greenwood et al. (2015b) note the hump-shaped pattern in forward rates in response to un-
conventional policy announcements and argue that expectations of future changes in bond supply
likely account for that pattern. While my model does not rule out their type of mechanism, it
implies the effects of bond-supply shocks are relatively modest and that the empirical hump in the
forward curve can alternatively be explained by the non-monotonic effects of changes in short-rate
expectations that arise at the ELB.

A final set of related papers are the empirical studies that have attempted to decompose the
effects of unconventional policy into various channels. Krishnamurthy and Vissing-Jorgensen (2011,
2013) argue, based on event studies, that the evidence for the duration channel is weak, consistent
with what my model implies. Swanson (2017) conducts event studies on unconventional policy to
isolate a component reflecting short-rate expectations and a residual component that he essentially
interprets as reflecting the duration channel. Although he concludes that the latter is important
for long-term yields, his approach requires that factor loadings for interest rates in the ELB period
were similar to those in the pre-ELB period. My model effectively allows for endogenous changes
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in loadings at the ELB and suggests that those changes could be quite substantial.8

2. Theoretical Framework

2.1. Investor behavior and equilibrium bond prices

I begin with the same portfolio-choice problem that forms the basis of the models in Vayanos
and Vila (2009) and the several theoretical papers that have followed it. Investors have access to
a continuum of zero-coupon bonds with maturities 0 to T . At each point in time t, they choose

to hold a market-value quantity xt (τ) of each maturity τ . Let P
(τ)
t represent the time-t price of a

bond with remaining maturity τ . In addition, investors have access to a risk-free security that pays
the instantaneous rate rt. Investors’ time-t wealth Wt is the sum of the market-value of the bond
portfolio and the risk-free asset, and it thus evolves according to

dWt =

∫ T

0

xt (τ)
dP

(τ)
t

P
(τ)
t

dτ +

(
Wt −

∫ T

0

xt (τ) dτ

)
rtdt (1)

Investors have mean-variance preferences, and thus, taking Wt as given, they choose quantities
xt (τ) to solve the problem

max
xt(τ)∀τ

Et [dWt]−
a

2
vart [dWt] (2)

subject to (1), where a is absolute risk aversion and Et and vart represent expectation and variance
conditional on the time-t state.

The first-order conditions for this problem can be written as

Et

[
dP

(τ)
t

P
(τ)
t

]
= rtdt+ a

∫ T

0

xt(s)covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
ds (3)

for all τ . Note that, under risk-neutrality (a = 0), all bonds have the same expected return, equal
to the risk-free rate. Otherwise, the risk premium demanded for each bond is proportional to the
covariance of that bond’s price with the return on the whole portfolio of bonds.

The model is closed by assuming that the government exogenously supplies a time-varying
quantity of bonds zt(τ) at each maturity. A solution to the model is a set of state-contingent bond
prices that clear the market. Specifically, market clearing requires

zt (τ) = xt (τ) (4)

at each maturity τ and at each point in time t. Prices adjust to make (3) and (4) hold jointly in
all states of the world. Since investors optimize without constraints on their portfolio weights, the
equilibrium is arbitrage free.

Denote log bond prices as p
(τ)
t = logP

(τ)
t . By Itô’s Lemma,

8D’Amico and King (2013) and Cahill et al. (2013) present event-study evidence that asset purchases may also
operate through a scarcity or “local supply” channel, whereby imperfect substitutability causes yields to fall by more
for maturities where more purchases occurred. My model is silent about this type of phenomenon.
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Et

[
dp

(τ)
t

]
= Et

[
dP

(τ)
t

P
(τ)
t

]
− 1

2
vart

[
dp

(τ)
t

]
(5)

and

covt

[
dp

(τ)
t , dp

(s)
t

]
= covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
(6)

for any two bond maturities τ and s. Expected log returns in equilibrium are thus

Et

[
dp

(τ)
t

]
= rtdt+ a

T∫
0

zt(s)covt

[
dp

(τ)
t , dp

(s)
t

]
ds− 1

2
vart

[
dp

(τ)
t

]
(7)

Because all bonds payoff a face value of 1 with certainty at maturity—that is, they satisfy the

boundary condition p
(0)
t = 0 at all t—bonds with positive maturities are given by the sum of

expected future returns:

p
(τ)
t = −

∫ T

0

Et

[
dp

(τ−s)
t+s

ds

]
ds (8)

The following standard relationships then determine bond yields y
(τ)
t and τ -period instantaneous

forward rates f
(τ)
t :

y
(τ)
t ≡ −p(τ)

t /τ (9)

f
(τ)
t ≡ −∂p

(τ)
t

∂τ
(10)

The exogenous variables in this model are the short rate rt and the maturity-specific bond
supplies zt(τ). Throughout the paper, I assume that rt is determined by a shadow-rate process,
described in the following subsection. I consider a number of possibilities for zt(τ). In Section 3,
to illustrate the properties of the model most transparently, I simply assume that zt(τ) is constant
across maturities and over time. In Sections 4 and 5, where the focus is on quantitative estimates,
I consider more-realistic stochastic processes for bond supply.

2.2. The short rate

I assume that the short rate rt is determined by

rt = max[r̂t, b] (11)

where the shadow rate r̂t follows the Ornstein-Uhlenbeck process

dr̂t = κ(µ− r̂t)dt+ σdBt (12)

for mean, persistence, and variance parameters µ, κ, and σ, with Bt being a Brownian motion.
I assume that 0 < κ < 1. This is the same process used in the empirical shadow-rate literature

5



mentioned in the introduction. As noted there, that literature generally shows that the shadow-rate
specification performs well in describing the reduced-form dynamics of the yield curve at the ELB.
Obviously, a special case that produces an affine specification for the short rate is b = −∞. This
will be a useful case for comparison, because it is the specification used in the previous theoretical
literature on the duration channel.9

Given (12), the conditional distribution of future shadow rates s periods ahead is normal, with
mean Et [r̂t+h] and variance vart [r̂t+h] given by the standard affine prediction equations. In a model
with no lower bound, where r̂t = rt in all states of the world, those equations also describe the
conditional distribution of future short rates. Once the ELB is imposed, however, the short rate
at any period in the future is distributed truncated normal if r̂t+s > b and is simply equal to b
otherwise. Therefore, the mean of rt+s, conditional on information at time t, is given by

Et[rt+s] =
(

1− Φ
(s)
t

)
b+ Φ

(s)
t Et [r̂t+s|r̂t+s > b] (13)

where Φ
(s)
t is the probability that r̂t+s exceeds b in period t+ s—that is,

Φ
(s)
t = Φ

(
Et [r̂t+s]− b√

vart [r̂t+s]

)
(14)

where Φ(.) denotes the standard-normal CDF. It follows that Et [rt+h] >Et [r̂t+h]; thus, expectations
of rt+s are always higher in the presence of a finite b than they would be in the affine case. Similarly,
since the variance of rt is zero whenever r̂t < b, the unconditional variance of vart[rt+s] is always
lower in a model with an ELB.10

Since r̂t+s is distributed normally at all horizons s, the moments of rt+s can be calculated
analytically. The solid lines in Figure 1 depict the conditional moments of the forward short rate

9Although the ELB is imposed a priori here, it is trivial to extend the model to endogenize it by allowing investors
to hold an elastic supply of cash (paying zero nominal return) in addition to the risk-free asset. Alternative short-rate
processes that impose the ELB also exist. For example, in Monfort et al. (forthcoming), once the ELB is reached,
the short rate stays there with some time-varying probability. At least qualitatively, such differences in specification
are unimportant. The crucial features are that short-rate volatility is low at the ELB and that the ELB is “sticky,”
in the sense that the short rate tends to stay there for some time once it reaches it. Any model that generates these
properties (which are amply evident in the data) will produce results along the lines of those presented below.

10By the law of total variance, the variance of the shadow rate can be decomposed as

vart[r̂t+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b] + (1− Φ

(s)
t )vart [r̂t+s|r̂t+s ≤ b]

+ Φ
(s)
t (Et [r̂t+s|r̂t+s > b]− Et[rt+s])

2 + (1− Φ
(s)
t )(Et [r̂t+s|r̂t+s ≤ b]− Et[rt+s])

2

which, from (13), simplifies to

vart[r̂t+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b] + (1− Φ

(s)
t )vart [r̂t+s|r̂t+s ≤ b]

+ Φ
(s)
t (1− Φ

(s)
t )(Et [r̂t+s|r̂t+s > b]− Et [r̂t+s|r̂t+s ≤ b])2

An analogous calculation shows

vart[rt+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b]

+ Φ
(s)
t (1− Φ

(s)
t )(Et [r̂t+s|r̂t+s > b]− b)2

Direct comparison of these last two equations reveals that vart[r̂t+s] is greater than vart[rt+s].
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using µ = 4.9%, κ = 0.019, σ = 0.77%, and b = 0.17%, which are values that are consistent with
the data.11 The moments are plotted for horizons of 2, 5, 10, and 15 years across different values of
the current shadow rate r̂t, shown on the horizontal axes. Vertical lines indicate the location of the
ELB. For comparison, the dashed lines show the corresponding conditional moments in the affine
case, b = −∞, keeping all other parameters the same.

Panel A shows how expected future short rates in the shadow-rate model asymptote to b as
r̂t → −∞. Note that the derivatives of Et[rt+s] with respect to r̂t decrease and eventually go to
zero as the shadow rate falls below the ELB. Thus, shocks to r̂t will have generally weaker effects
on the expectations component of yields when r̂t < b. Moreover, these shocks may have larger
effects on the expectations component of medium or long-term yields than on shorter-term yields.
This contrasts to an environment far above the ELB, where the effects of shocks to r̂t are always
largest at the short end of the curve.

Similarly, in Panel B, as r̂t falls below b, the conditional variance of the future short rate drops
notably. The reason for this is intuitive—when the shadow rate is far below the ELB, the actual
short rate will almost certainly be equal to the ELB for a long time and therefore will display little
variation. All else equal, the lower short-rate volatility near the ELB will mean that the volatilities
of all yields are lower near the ELB. Thus the covariance terms that represent the multipliers on
zt in equation (7) will generally be smaller. Heuristically, this implies that both the levels of risk
premia and their sensitivity with respect to bond holdings will be smaller at the ELB than they are
away from the ELB (or in an affine model). The following section explores these assertions more
rigorously.

3. Consequences of the ELB for bond pricing

In this section I demonstrate how the presence of the ELB affects the equilibrium determination
of bond prices. To isolate the key mechanisms, I consider a simplified version of the model in
which bond supply is flat across maturities and constant over time. That is, zt(τ) = ζ, for some
constant ζ > 0. Of course, for quantitative purposes, it will ultimately be necessary to relax this
assumption, and the subsequent sections of the paper will consider stochastic-supply versions of
the model in specific numerical simulations. For the purposes of illustrating the general properties
of the model, however, holding bond supply fixed greatly reduces analytical complexity without
meaningfully altering the conclusions.

3.1. Bond returns

In general, bond prices are a nonlinear function of the shadow rate. Define the time and

maturity-specific coefficients A
(τ)
t ≡ ∂p(τ)

t /∂r̂t. Since r̂t is the only source of variation in the model,
the covariance between the returns on two bonds of arbitrary maturities τ and s can be written as

covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
= A

(τ)
t A

(s)
t σ2 (15)

With x(τ) = ζ for all τ in equilibrium, equation (3) gives the expected excess return (i.e., risk
premium) on a τ -maturity bond:

11The details of the parameterization are discussed in Section 4.2.
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Et

[
dP

(τ)
t

P
(τ)
t

]
− rtdt = aζσ2A

(τ)
t

∫ T

0

A
(s)
t ds (16)

Solving the model is tantamount to solving for the coefficients A
(τ)
t . In the special case where

the ELB never binds (b = −∞), one can show that the solution is

A
(τ)
t |(b=−∞) =

∫ τ

0

e−κsds =
1− e−κτ

κ
(17)

Indeed, this is precisely the affine model studied by Vayanos and Vila (2009) with constant bond

supply. Note that A
(τ)
t |(b=−∞) is non-negative and increasing in τ , implying that risk premia are

strictly positive and larger for longer-maturity bonds. Because A
(τ)
t |(b=−∞) is constant for any τ ,

at any given maturity the model produces a return volatility and a risk premium that do not vary
with r̂t. Finally, since (17) does not involve ζ, the effect of a hypothetical change in bond supply
on the maturity-τ expected return is given by

∂Et[dP
(τ)
t /P

(τ)
t ]

∂ζ
= aσ2A

(τ)
t

∫ T

0

A
(s)
t ds (18)

Thus, expected returns at any given maturity have a (positive) sensitivity to the level of bond
supply that is independent of the value of the shadow rate.

Once we allow the ELB to bind occasionally, the model no longer admits an analytical solution.

However, Appendix A shows that, to a first-order approximation, A
(τ)
t in this more general case is

given by

A
(τ)
t ≈

∫ τ

0

e−κsΦ
(s)
t ds (19)

where, as in the previous section, Φ
(s)
t = Prt [r̂t+s > b].12 In words, A

(τ)
t represents the accumulated

stream of probabilities that the short rate will be unconstrained by the ELB in each of the next τ
periods, discounted at rate κ. The more likely r̂t is to spend time below b between periods t and

t + τ , the lower A
(τ)
t will be. The Vayanos-Vila model in (17) is a limiting case that holds when

the ELB never binds so that Φ
(s)
t = 1 for all t and s.

The key result is that, outside of the affine case, A
(τ)
t is strictly increasing in r̂t. Specifically,

∂A
(τ)
t

∂r̂t
≈
∫ τ

0

e−2κsϕ
(s)
t ds > 0 (20)

where ϕ
(s)
t is the PDF associated with Φ

(s)
t . Since this derivative is positive for all bonds when

b > −∞, the covariance between any two bonds’ returns, given in equation (15), is also increasing
in r̂t. In particular, bond-return volatilities (and covariances) become damped as the short rate

12Equation (19) holds exactly if either a = 0 or b = −∞. The absence of a closed-form expression for bond prices
is a general property of Gaussian no-arbitrage shadow-rate models, even when no structural equilibrium conditions
are imposed. See Kim and Singleton (2012), for example.
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approaches the ELB from above. Effectively, the reduced variance of rt that was evident in Figure
1 gets passed through to the variances of longer-term bonds.

This state-dependence of the return covariances has implications for risk premia through equa-
tion (16). Risk premia are uniformly higher when the shadow rate is higher. Even when rt is
constrained by the ELB, shocks to the shadow rate—such as those induced by forward guidance
about monetary policy—have effects on risk premia through this channel. An increase in the length

of time the ELB is expected to bind, for example, is associated with a reduction in A
(τ)
t and there-

fore leads to lower expected excess returns on bonds, in addition to a lower expected path of the

short rate. Furthermore, the derivative in (18) is directly proportional to the A
(τ)
t terms and is

therefore also increasing in the shadow rate. Thus, the effects of changes in bond supply will be
lower when rt is at or near the ELB than they are when it is far above the ELB.13

These results can also be viewed in terms of the price and quantity of risk. In particular, one
can rearrange equation (16) to express expected excess returns as

Et

[
dP

(τ)
t

P
(τ)
t

]
− rt = A

(τ)
t λt (21)

where the market price of risk λt is the same for all bonds in period t and is given by

λt = aζσ2

∫ T

0

A
(s)
t ds (22)

Risk prices depend positively on all of the A
(τ)
t terms, which means that they are increasing in the

shadow rate—that is, risk prices are lower at the ELB.14 In contrast, in the affine version of the
model risk prices are constant. Furthermore, (22) makes it clear that bond supply affects returns
by determining the price of risk. In the affine model, the sensitivity of the risk price to bond supply
∂λt/∂ζ is constant. In contrast, with b > −∞, this sensitivity is strictly increasing in r̂t so that
risk prices are less responsive to bond supply at the ELB.

3.2. Bond yields

The discussion to this point has been cast entirely in terms of expected bond returns, but
in the remainder of the paper the primary interest will be in bond yields. Although they are
somewhat more cumbersome to work with, all of the qualitative results just discussed for expected
returns also hold for yields. In particular, by substituting equation (16) into (5), (8), and (9), it is
straightforward to show the following:

• The sensitivity of yields to bond supply (∂y
(τ)
t /∂ζ) is strictly increasing in the shadow rate.

• Term premia, y
(τ)
t − Et

∫ τ
0
rt+sds, are strictly increasing in the shadow rate.

13Equation (18) still holds as an approximation to the effect of bond supply in the presence of the ELB, because
(19) does not involve ζ.

14Indeed, risk prices are nonlinear in r̂t. This result presents a challenge to empirical shadow-rate term-structure
models, which typically assume that risk prices are affine in the states (e.g., Kim and Singleton, 2010; Wu and Xia,
2016). The model here instead suggests that risk prices endogenously decrease in a nonlinear way around the ELB.
I thank Don Kim for pointing this out to me.
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• At the ELB, shocks to the shadow rate have their largest impact on intermediate-maturity
yields.

The first two of these propositions follow immediately from the discussion of bond returns above.
The third proposition arises from the following argument. Because the state variable in the model
is stationary, expectations for returns in the far future must be invariant to today’s shocks. Because

yields are averages of expected returns, this implies ∂y
(τ)
t /∂r̂t → 0 as τ → ∞. But, at the ELB,

short-term yields are constrained at b. Therefore, ∂y
(0)
t /∂r̂t = 0 when r̂t < b. Since yields do not

move at the very short or very long end, they must move the most in the middle of the curve.
Figures 2 and 3 demonstrate these propositions quantitatively, solving the model numerically.

The numerical solution, described in Appendix B, relies on an iterative projection method and is
more precise than the first-order approximation described above. For the purposes of illustration,
I use the same short-rate parameters as in Figure 1 and set risk aversion to a = 0.15, which is the
value used in the two-factor version of the model discussed in the next section.

Figure 2 shows comparative statics over the supply parameter ζ at two different levels of the
shadow rate. In the left-hand graph, the shadow rate is at r̂t = 5.2%, the unconditional mean of
the short rate in the data. In the right-hand graph, it is at r̂t = −2.7%, which is the average value
obtained by the shadow rate during the ELB period, according to Krippner’s (2012) estimates. In
both graphs, the black line depicts the yield curve when the model is solved using ζ = 0.42, a value
which allows the model to match the average level of the ten-year yield in the data. The red line
shows the yield curve using ζ = 0.21. Thus, loosely speaking, the comparison shows what happens
to the yield curve when we remove half of the bond supply from the market, conditional on different
values of the shadow rate. Since expected future short rates are unaffected by the value of ζ, the
entirety of the difference between the black and red lines reflects a difference in term premia.

The reduction in bond supply has a notable effect on yields in both panels. However, when the
short rate is above the ELB, the effect is substantially larger. For example, the ten-year yield falls
by 95 basis points when r̂t = 5.2% but only by 53 basis points when r̂t = −2.7% in response to the
same decrease in supply. This illustrates the attenuation of supply effects when the ELB is binding.

Figure 3 shows the effect of a one-standard-deviation negative shock to the shadow rate, starting
from the same two illustrative values of r̂t. The top panel shows the responses of the spot-rate
yield curve, while the bottom panel shows the same information in terms of forward rates, where
the patterns are somewhat easier to see. In each graph, the pink region depicts the change, on
impact, resulting from the shock through the expectations component, while the blue region depicts
the change in the term premium. Far above the ELB, the shadow rate shock has a monotonic
effect on yields that arises almost entirely through the expectations component. This is similar
to the outcome in the affine model, where the term premium is unaffected by shocks to the short
rate. (Indeed, it asymptotes to that case as the starting value for r̂t is moved farther above the
ELB.) Below the ELB, the situation is quite different. The overall effect of the shock is smaller
at all maturities; the reaction across forward rates is hump-shaped rather than monotonic; and
the response is due to both a decline in the expectations component and a decline in the term
premium. The reduction in the term premium in response to the shock accounts for about a third
of the overall yield decline at longer maturities in this example (e.g., 10 of the 28 basis points on
the ten-year yield). Its largest effect on forward rates is at the 8-year maturity, contributing to
the hump shape of the response. Thus, these results illustrate both the term premium effects of
shadow-rate shocks at the ELB and the relatively large reaction of the middle of the forward curve
to such shocks in these circumstances.
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4. Quantitative evaluation of the model with stochastic bond supply

I now turn to the quantitative implications of the model when there are shocks to the supply of
bonds available to investors. I first show that, when suitably parameterized, the model matches a
number of key features of the data, particularly at the ELB. In Section 5, I then use the model to
simulate the effects of the Federal Reserve’s unconventional monetary policies.

4.1. Bond supply process

To lend further realism to the model, I relax the assumption that bond supply is flat across
maturities and constant over time. Since bond supply is continuous across maturities, the object
zt(τ) is an infinite-dimensional vector. Previous literature specifies it as an affine function of a finite
state vector βt:

zt (τ) = ζ (τ) + θ (τ)βt (23)

where ζ (τ) and θ (τ) are maturity-specific intercepts and coefficients. Meanwhile, βt is assumed to
follow the Ornstein-Uhlenbeck process

dβt = −κββtdt+ σβdBβ,t (24)

where κβ and σβ are parameters governing the persistence and variance of βt, and Bβ,t is a Brownian
motion with innovations independent of those in Bt. I take the dimension of βt to be 1.

I further assume that the intercept in (23) is constant across maturities: ζ (τ) = ζ. This involves
only a small loss of generality, since ζ (τ) is integrated out in equation (7) and is thus only a level
shifter. Similarly, the individual factor loadings θ (τ) do not matter for yields; only the weighted

sum
∫ T

0
θt (s) covt

[
dp

(τ)
t , dp

(s)
t

]
ds does. This suggests that the exact specification of the function

θ (τ) is not of first-order importance, so long as it can generate realistic behavior for overall portfolio
duration.15 For simplicity, I follow Greenwood et al. (2015b) by assuming that this function is
linear in τ :

θ (τ) =

(
1− 2τ

T

)
(25)

This specification implies that the bond distribution behaves with a see-saw motion across matu-
rities. Positive supply shocks reduce the amount of long-term bonds and increase the amount of
short-term bonds in equal measure, with the fulcrum at τ = T/2.

Two helpful summary measures of bond supply that are frequently used in the literature have
direct counterparts in the model. The first measure is the weighted-average maturity (WAM) of
the oustanding debt, which is given by

WAMt = v

∫ T
0
τzt (τ) dτ∫ T

0
zt (τ)t dτ

(26)

where v is the length of one period, expressed in years. The second measure is the amount of
“ten-year-equivalent” bonds outstanding. This variable is defined as the dollar value of ten-year
bonds that would produce the same duration-weighted value that the actual portfolio of outstanding

15Malkhozov et al. (2016) make a similar point.
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bonds has. (Thus, for example, a portfolio of 5-year bonds with a value of $100 is worth $50 in
terms of ten-year equivalents.) Mathematically, the amount of ten-year equivalents is defined as

10YEt =
v

10

∫ T

0

τzt (τ) dτ (27)

The integrals in both of these equations can be evaluated analytically, given the assumed process
for zt (τ), providing convenient ways of translating real-world changes in the outstanding bond
distribution into the bond-supply shocks of the model.

4.2. Parameters and solution

There are nine parameters in the model, which I set to match empirical moments of Treasury
supply and the yield curve. Specifically, I use the Gurkaynak et al. (2007) zero-coupon yields
available on the Federal Reserve Board’s website and the Treasury security data available in CRSP.16

I start the sample in August 1971 because at that time 10-year yields become available. The sample
ends in December 2015. The specific moments that I match are discussed below. The parameters
are summarized in the top line of Table 2.

A period is normalized to one calendar quarter (i.e., v = 1/4), and I take T , the maximum-
maturity bond available to investors, to be 60 quarters. This matches the longest maturity bond
that was continuously available over the period under consideration. It also happens to be close
to the typical duration of a 30-year coupon bond, which is the longest bond issued by the Treasury
at any point during this period. Alternative values for T make little difference, however.

I calibrate the autoregressive coefficient on the supply factor κβ to match the persistence of the
weighted-average maturity of outstanding Treasury debt (the same series used in the regressions in
Table 1). In the data, this variable is calculated as the value-weighted timing of all cash flows on
all Treasury instruments held by the public. In the model, the WAM of the debt held by investors,
expressed in years, is given by equation (26):

WAMt = v

∫ T
0
τ
[
ζ +

(
1− 2τ

T

)
βt
]
dτ∫ T

0
ζ +

(
1− 2τ

T

)
βtdτ

0

= vT (
1

2
− 1

6ζ
βt) (28)

Since WAMt is linear in βt, it has the same persistence. Thus, I match the persistence of WAM
in the data, using the four-quarter autocorrelation (0.92) to abstract from seasonal patterns in
Treasury issuance. This gives κβ = 0.021.17 The parameter σβ determines the scale of the
bond-supply factor. Since βt is unitless, this parameter has no economic content and indeed is
not separately identified. Without loss of generality, therefore, I set it such that the unconditional
variance of βt is normalized to 1.

I determine the remaining parameters by matching the long-run empirical features of the yield
curve. In general, all of the moments of yields are affected by all of the model parameters, and I

16Center for Research in Security Prices, Booth School of Business, The University of Chicago. Used with permis-
sion. All rights reserved. crsp.uchicago.edu.

17Of course, equating investors’ bond holdings in the model with Treasury debt in the data might be taking the
model too literally given that real investors may also have duration exposure through other instruments. However,
other calibrating κβ to other autocorrelations in the 0.8 to 1 range, holding the rest of the parameters constant,
produces similar outcomes to those reported below.
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therefore search for vectors of parameters that jointly match the data using simulated method of
moments. Specifically, I (1) solve the model numerically for each candidate parameter vector, (2)
simulate 1 million periods of data using that solution, and (3) compute the model-implied moments
that result from those simulations. I iterate this procedure until the moments all are matched to
within three significant digits. There are six remaining parameters and I match six moments in the
data, so the parameter values are just-identified.

The specific moments I match are the unconditional mean and standard deviation of the three-
month Treasury yield (5.2% and 3.6% respectively), the unconditional mean and standard deviation
of the ten-year yield (6.7% and 2.9%), and the correlation between the three-month and ten-year
Treasury yield (0.91). In addition, I match the average value of the three-month Treasury yield at
the ELB. Specifically, between December 2008 and December 2015, the three-month yield averaged

0.22%, with a maximum value of 0.68; I thus require parameters that achieve a mean y
(1)
t of 0.0022

conditional on y
(1)
t < 0.0068.18 The values for κ, µ, σ, a, b, and ζ that produce these same moments

in the simulations, given the values of the other parameters, are those reported in the top row of
Table 2.

For comparison, I consider two alternative models in which b = −∞, i.e., models with an affine
process for the short rate. In the first such model, shown in row 2 of Table 2, I set all parameters
other than b equal to the same values as in the shadow-rate model in order to isolate the effects
of imposing the ELB. In the second affine model, shown in row 3, I recalibrate the parameters
to match the same set of unconditional yield-curve moments that the shadow-rate model matches.
The parameters turn out to be fairly similar to those in the baseline model, with the primary
differences being that µr̂ is a bit higher and σr̂ is a bit lower due to the truncation effects noted
earlier.

I solve the model globally by discretizing the state space and iteratively (a) calculating state-
contingent bond prices in equation (8) given conditional expectations, and (b) calculating condi-
tional expectations given state-contingent prices using the transition densities implied by equations
(12) and (24). Cubic interpolation between the discretized nodes is used for situations, such as
model simulation, in which state values are required to be continuous. The details of the solution
method are described in Appendix B.

4.3. Model fit

Table 3 summarizes the properties of bond yields produced by the calibrations in the shadow-
rate and affine models and compares these results to the data. The model-implied moments are
calculated by drawing 1,000,000 times from the distributions of ert and eβt and simulating the result-
ing paths of the state variables r̂t and βt. To illustrate the importance of the ELB, I report the
results conditional on the one-quarter yield being both below and above the value 0.68%. Again,
the reason for choosing this threshold is that it was the maximum attained by the three-month
Treasury yield in the data during the time that the Federal Reserve kept its policy rate in the 0 –
25 basis point range.

The shadow-rate model matches the data quite well when the short rate is at its lower bound,
coming within a few basis points of the means and standard deviations of all but the longest yields.

18Note that the three-month yield used in these calculations is the fitted value of the Gurkaynak et al. curves,
which are based on Treasury coupon-security data. It is not a Treasury bill rate. It thus avoids any premium
associated with very liquid, “money-like” assets.
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In contrast, the affine model with the same calibration predicts a one-quarter yield that averages
-1.3% (negative Treasury rates never actually appear in the data) and an average yield-curve slope
that is dramatically steeper than what was observed. It also predicts slope volatilities that are
somewhat farther from the data than those given by the shadow-rate model. The affine model
that is recalibrated to match the unconditional yield curve moments does slightly better at the
ELB, but it still significantly underperforms the shadow-rate model. It also underestimates the
frequency with which the ELB binds by about 40%. The shadow-rate model achieves its successes
near the ELB without sacrificing performance relative to the affine models in other regions of the
state space. As the bottom panel shows, all three models differ from each other by only a few basis
points for all of the reported statistics when the one-quarter yield is greater than 0.68%.

4.4. Yield sensitivities to state variables

I now consider how bond supply and the shadow rate affect the yield curve in different regions

of the state space. To facilitate this discussion, define the state-dependent factor loadings a
(τ)
r̂,t ≡

∂y
(τ)
t /∂r̂t and a

(τ)
β,t ≡ ∂y

(τ)
t /∂βt.

19 The solid lines in Figure 4 depict these loadings in the shadow-
rate model across a range of values for r̂t, holding βt fixed at its mean value of zero. The dashed
lines depict the corresponding loadings in the affine model under the baseline calibration (line 2
of Table 2). Since yields are affine functions of the states in the affine model, the factor loadings
are constant and the dashed lines are always flat. The factor loadings in the shadow-rate model
asymptote to those of the affine model as r̂t rises farther above the ELB.

For reasons discussed in Section 3, a
(τ)
r̂,t is monotonically increasing in r̂t, as shown in panel A

of Figure 4. Furthermore, for r̂ low enough, a
(τ)
r̂,t < a

(s)
r̂,t when τ < s. Consequently, longer-term

yields respond to shadow-rate shocks by more than shorter-term yields do. This pattern is the
opposite of what we observe when r̂t > b, and it is the opposite of what the affine model predicts.

Meanwhile, as shown in panel B, in the shadow-rate model, a
(τ)
β,t is monotonically decreasing (i.e.,

becoming more negative) in r̂t. (Recall that increases in βt reduce the duration exposure of investors
and therefore have negative effects on term premia.) This result replicates in the stochastic-supply
version of the model the damping effects of the ELB on bond the effects of bond supply that were
demonstrated in Section 3. As discussed there, it occurs because vart [rt] falls as r̂t moves below
the ELB, causing the covariance terms in (7) to become smaller. Consequently, at the ELB—and
particularly when r̂t is deeply negative—bond-supply shocks have smaller effects on yields than
they do in the affine model.

Figure 6 shows the factor loadings plotted across a range of values for βt, holding r̂t fixed at
either the unconditional mean of the short rate (Panel A) or at a value of −2.7% (Panel B). As
before, I choose the latter value for illustration of the ELB environment because it is the average
of the shadow rate estimated by Krippner (2012) during the ELB period in the U.S..20 From this
perspective, the differences between the shadow-rate and the affine model are evident even when
the short rate is at its unconditional mean, and they are of first-order importance when the shadow

rate is negative. In that region, two particularly noteworthy results stand out. First, a
(τ)
r̂,t is not

19Note that a
(τ)
r̂,t

= −A(τ)
t /τ in the one-factor model of the previous section. That is, it is the loading in yield

space, rather than return space.
20To interpret the meaning of r̂t = −.027, simulations starting from this value produce a modal time of 6 quarters

until the shadow rate moves above the ELB. This is roughly consistent with survey evidence on market participants’
expectations and other evidence collected during much of the ELB period (see Femia et al. (2013)).
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only strictly lower that it is when r̂t is positive, it is also decreasing in βt. The reason is that, when
βt is positive, investors have relatively little exposure to long-term bonds. Consequently, when
the shadow rate rises, the resulting increase in short-rate risk has a relatively small effect on term
premia. When βt is negative, in contrast, investors’ bond exposures are greater, and increases in
the shadow rate have a larger impact on term premia through their effects on short-rate volatility.

Second, A
(τ)
β,t is increasing (becoming less negative) in βt. Intuitively, higher levels of βt reduce

exposure to long-term bonds, making long-term yields less sensitive to the changes in short-rate
risk induced by the shadow-rate. Consequently, positive shocks to βt reduce the volatility of yields,
making further shocks to βt less potent. This result implies, for example, that the marginal effects
of asset purchases decline as the central bank does more of them. It will also be important for
analyzing the relative effectiveness of alternative policies in different environments in Section 5.

The state-dependent factor loadings explain the empirical patterns that were illustrated in Table
1 in the introduction. Recall that the regressions reported there showed that Treasury supply had
smaller effects during the ELB period than in the pre-ELB sample. This is exactly the result
predicted by panel B of Figure 4. Table 1 also showed that regression coefficients of long-term on
short-term yields became larger at the ELB, in particular rising from less than 1 to greater than 1.
That the model reproduces this result can be seen by examining the factor loadings in the panel
2.A, and in particular how they cross in the sub-ELB region.

Table 4 makes these patterns clearer by computing the linearized relationships between long-
term yields, shorter-term yields, and WAMt in the model. Given equation (28), the response of

the τ -period yield to a change in WAMt is −6ζa
(τ)
β,t/vT . Panel A reports these responses at various

values of the shadow rate, for τ = 5, 10, and 15 years, in the first group of columns. To make
the comparison to Table 1 clearer, the second and third groups of columns report the sensitivity
to WAMt holding fixed the one-year yield or the two-year yield.21 The sensitivities are similar in
magnitude to the estimates in Table 1. They show a clear decline at the ELB, just as the regression
results do.22 Similarly, panel B shows state-contingent linearized coefficients of the τ -period yield

on the one- and two-year yields, holding the supply factor fixed (a
(τ)
r̂,t /a

(4)
r̂,t and a

(τ)
r̂,t /a

(8)
r̂,t ). As in

Table 1, the coefficients rise from less than 1 to greater than 1 at the ELB and switch from being
most-sensitive to least-sensitive at the five-year maturity. These results further support the ability
of the model to explain the empirical behavior of the yield curve and its relationship to bond supply
in the ELB environment.

5. Assessing unconventional policy

5.1. Simulating policy paths

I now use the model to study the effects of unconventional monetary policy. The Federal
Reserve implemented two main types of such policy: asset purchases (also known as “quantitative
easing”) and forward guidance about the future course of the short-term interest rate. Jointly,
these policies can be mapped into the shadow-rate and bond-supply shocks of the model. However,
as a number of authors have noted, QE may have worked in part through a “signaling channel,”

21These coefficients are given by −6ζ(a
(τ)
β,t − a

(s)
β,t/a

(s)
r̂,t

)/vT for s = 4 or 8 quarters.
22Since there is no concept of GDP in the model, it is not possible to mimic the specifications in Table 1 that use

the maturity-weighted debt-to-GDP ratio. However, if the model results are computed replacing WAMt with the
model-implied measure of ten-year-equivalent bonds the same patterns hold.
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serving as a commitment by the Fed to keep the short rate at the ELB for a longer time. (E.g.,
Woodford (2012); Bauer and Rudebusch (2014); Bhattarai et al. (2015).) If so, then such policies
involve shocks to both bond supply and the shadow rate. For this reason, I do not attempt to
distinguish the effects of forward guidance and QE per se but rather model the joint effects of
changes in the anticipated short rate and bond supply.

The strategy is to feed the model a set of shocks that approximate those associated with
unconventional policy during the ELB period and calculate the yield-curve effects of those shocks.
To conduct this exercise, one must translate the actions taken by the Federal Reserve into shocks
that can be input into the model. Cumulatively, we know fairly precisely how large these shocks
were. rt remained at the ELB for seven years, and so the shadow-rate shocks in the simulation must
keep rt at b for exactly 28 periods. Over the same time, Greenwood et al. (2015a) report that the
Fed removed approximately $2.7 trillion of ten-year-equivalent bonds from the market, including
Treasuries, agency debt, and MBS. This was approximately 21% of the total 10-year equivalents
outstanding in these markets as of December 2015, which from equation (27) is sufficient to pin
down the cumulative size of the shocks to bond supply.23

While it is tempting to interpret the bond-supply shocks associated with QE events simply
as realizations of eβt , Federal Reserve asset purchases likely differed in important ways from the
other types of bond-supply fluctuations that dominate the long span of data. In particular, in the
baseline model above the parameter κβ was calibrated to a value of 0.021, implying a half-life of 8.5
years, to match the persistence of Treasury debt since 1971. But Fed asset purchases were almost
certainly interpreted as less persistent than that. Carpenter et al. (2015) inferred from surveys of
market participants, conducted while the QE programs were taking place, that the size of the Fed’s
balance sheet was expected to normalize by August 2020. By that reckoning, the expansion of the
Fed’s balance sheet, which occurred between December 2008 and December 2014, had a perceived
half-life of less than 4.5 years on average, substantially less than that of bond-supply shocks under
the baseline calibration.24

To account for these differences, I extend equation (23) to allow for an additional supply factor
Qt representing bond-supply shocks due to changes in the Federal Reserve’s balance sheet:

zt (τ) = ζ + θ (τ) (βt +Qt) (29)

where
dQt = −κQQtdt+ σQdBQ,t (30)

for “Fed balance-sheet” shocks dBQ,t. I set κQ = 0.04, giving Qt shocks a half life of 4.25 years,
and I continue to specify θ(τ) as in (25). When calculating bond yields in this model, I set σQ
to zero, so that the perceived risk associated with total bond supply is the same as in the baseline

23In December 2015, the CRSP Treasury data show ten-year-equivalent Treasury bonds of $9.5 trillion, while
SIFMA data show $7.4 trillion of agency-backed MBS and CMOs and $1.3 trillion of long-term agency debt out-
standing (http://www.sifma.org/research/statistics.aspx). Hanson (2014) shows that the average duration of a
30-year MBS is about 3.5 years, and I assume that the duration of long-term agency debt is 5 years. Under these
approximations, ten-year equivalents outstanding totaled $12.7 trillion.

24Other evidence on the persistence of QE is mixed, but it does not suggest mean reversion as low as 0.021. Wright
(2012) estimates a half-life of less than a year for the effects of unconventional monetary-policy shocks on yields in
a VAR. Altavilla and Giannone (2016) show that markets expected most of the effects of unconventional policy to
persist for at least a year, but the survey data they use do not extend beyond that horizon. Similarly, Swanson
(2017) finds that the persistence of most QE shocks was large, but he limits the estimation horizon to 180 business
days.
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model.25 All other parameters continue to take the values shown in the top row of Table 2. Since
Qt does not add additional risk to the model, the conditional moments of yields and the factor
loadings for r̂t and βt also remain the same as above. I note that, although the addition of the
balance-sheet factor adds realism to the model, the results presented below are largely unchanged
if asset purchases are simply treated as ordinary shocks to βt.

The nonlinearities induced by the ELB mean that both starting values and the trajectory of the
shocks matter. I use starting values based on the configuration of the yield curve on the eve of
unconventional policy. Letting t = 0 denote the period immediately before unconventional policies
were enacted, I set r̂0 = 0.0017, just at the ELB. I set β0 = −0.42, which produces a ten-year
yield-curve slope of 3.0%, the observed slope as of the FOMC meeting prior reaching the ELB. I
initialize Q0 to zero, since QE did not exist prior to the ELB.26

Since we cannot directly observe the trajectories of the shadow rate and the Fed balance-sheet
factor in the data, I simulate a range of possible trajectories, with each trajectory being consistent
with the observed outcomes of (1) a short rate that stays at zero for exactly 28 periods and (2) a
cumulative net reduction in 10-year-equivalent bonds of 21%.27 The details of these simulations are
discussed in Appendix C. Each simulation i consists of a set of 28 shocks to both the shadow rate
and the Fed’s balance sheet {(er̂i,1, e

Q
i,1), ..., (er̂i,28, e

Q
i,28)}, which accumulate into the state trajectories

{(r̂i,0, Qi,0), ..., (r̂i,28, Qi,28)} via equations (12) and (30). (By construction, er̂i,t = Br̂,t−Et−1[Br̂,t]

and similarly for eQi,t.) The initial values (r̂i,0, Qi,0), which were just discussed, are the same in all
simulations. The shocks to βt are set to zero, so that variable simply decays back toward its mean
over the period, following a path that is identical across all simulations.

Panel A of Figure 6 shows the resulting distribution of the simulated trajectories for r̂t. This
distribution spans empirical estimates of the shadow-rate path during the ELB period, including
those of Krippner (2012) and Wu and Xia (2016). Panel B shows the distribution of the Qt,
trajectories, converted to cumulative percentage changes in ten-year-equivalent bonds outstanding
for ease of interpretation, using equation (27). It is more difficult to know what the “right” path
of this variable ought to be (see footnote 27), but the distribution covers a fairly wide range of
possibilities.

5.2. Yield curve responses and their decomposition

With the simulated distributions of the state-variable trajectories in hand, I use the model to ex-
tract the yield-curve responses. To report the results, for each period in each simulation I calculate
how the yield curve changes, relative to how it would have changed if there had been no shock in

25This assumption is justified because QE purchases account for very little of the unconditional variation in the
duration risk of investors’ portfolios. Allowing for a positive σQ does not substantively change the results below, as
long as it is less than the unconditional variance of σβ .

26The ELB was officially reached on December 16, 2008, when the FOMC cut the target federal funds rate from
1% to a range of 0 to 25 basis points. However, from the Treasury market’s perspective the effective date may have
been slightly earlier. The three-month yield declined 102 basis points over the intermeeting period leading up to
December 16, in anticipation of the cut. In addition, the first announcement of asset purchases came on November
25. Using a starting value for bond supply based on the situation as of October 29, 2008, ensures that it does not
include these pre-ELB influences of unconventional policy.

27One might use data on the Fed’s holdings as an observed measure of Qt, and such a path is in fact spanned
by the set of trajectories I simulate. I allow for more ambiguity, however, because the term premium depends on
expectations of future asset purchases, not just the amount the Fed currently holds. In the model here, Et [Qt+h]
depends only on Qt, making the distinction between current balances and expected future balances fuzzy. Greenwood
et al. (2015b) explore this distinction in detail.
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that period. I then sum these differences across periods within each simulation. This procedure is
analogous to empirical event studies that attempt to isolate and accumulate the immediate impact
of policy shocks without accounting for their dynamics. (Here, there is an “event” in every period.)
Specifically, letting y(τ) (r̂t, βt, Qt) denote the τ -maturity yield as a function of the state variables,
I calculate

D
(τ)
i =

28∑
t=1

[
y(τ)(r̂i,t, βt, Qi,t)− y(τ)(r̂i,t − eri,t, βt, Qi,t − e

Q
i,t)
]

(31)

The distribution of D
(τ)
i across simulations is shown in Figure 7.A, with the corresponding calcu-

lation for forward rates shown in 7.B.
The median decline in the ten-year yield produced by the simulated unconventional policy shocks

is 207 basis points. This estimate does not differ much across simulations, with the middle 90% of
the distribution spanning only the range of -211 to -199 basis points. It is worth noting that these
are similar magnitudes to the effects that have been estimated in event studies of unconventional
policy. For example, looking at 23 important policy announcements during the ELB period, and
controlling for macroeconomic news, Altavilla and Giannone (2016) find a net effect on the ten-
year yield of -176 basis points. Comparisons between these kinds of results and the model cannot
be made precise because empirical event studies necessarily capture only a subset of the relevant
shocks, but they suggest that the model’s results are quantitatively realistic.

The model also reproduces another key stylized fact from the event-study literature. Rogers
et al. (2014) and Greenwood et al. (2015b) show that unconventional policy announcements typically
resulted in a hump-shaped reaction across the forward curve, with forward rates in the 5- to 10-year
range moving the most. The model generates exactly this pattern (see Figure 7.B). As was evident
in Figure 5, it does so because of the non-monotonic effects of shadow-rate shocks induced by the
ELB, which operate through both the expectations and term-premium components of yields.

I decompose the cumulative contemporaneous yield-curve reaction shown in Figure 7 into various
channels of unconventional policy. While this calculation captures the sources of the changes in
yields in the periods when shocks occurred, it does not account for the dynamic effects of those
shocks. Therefore, I also calculate a decomposition of the total model-implied variance in yields
during the ELB period. In both exercises, the breakdown is calculated by computing what the
change in yields would have been if only the shadow-rate or the Fed balance-sheet shocks had
occurred (again, relative to a baseline case in which there are no shocks at all). In the case
of the shadow-rate shocks, the response can be further decomposed into the expectations and
term-premium components. Finally, because of the nonlinearities, the responses to the individual
shocks do not sum exactly to the total response when both types of shocks occur simultaneously;
an “interaction” term captures the residual.

Table 5 shows the results of these decompositions according to the medians across simulations,
with the 5% and 95% quantiles reported in parentheses. Panel A presents the decomposition of
the cumulative contemporaneous effects, and panel B presents the total-variance decomposition.
Looked at either way, the shadow-rate shocks are responsible for considerably more of the change
in yields than the Fed balance-sheet shocks are. For example, as shown in column 4 of panel A, the
model implies that the duration effects associated with QE lowered the ten-year yield by a total of
just 47 basis points in the periods when they occurred. The shadow-rate shocks explain over 75%
of the contemporaneous declines in yields at this maturity, and at maturities of less than five years
they explain even more of the change (columns 2 and 3). The expectations component constitutes
the bulk of the effects of the shadow-rate shocks, but the term-premium effects of such shocks are
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also significant. They account for 70 basis points of the decline in yields at the ten-year maturity.
In panel B, the nonlinear interactions in column 6 loom larger, so that the precise contributions

of each factor to the overall variance of yields are somewhat less clear. Nonetheless, in the case with
Fed balance-sheet shocks alone (column 4), yields beyond the two-year horizon have less than 3%
of the variance that they have when both shocks are present. In contrast, in the case with shadow-
rate shocks alone (columns 2 and 3), the variance of yields is similar to the variance when both
shocks are present. At intermediate and long maturities, the term-premium effects of the shadow-
rate shocks explain about the same fraction of the total variance in yields that the expectations
component explains.

The above exercise has assumed that shadow-rate shocks and Fed balance-sheet shocks are
independent. In practice, it is likely that they were positively correlated at the ELB—for example,
several FOMC announcements during this period contained information about both the future short
rate and QE policies. While it is difficult to know exactly what the correlation was, I check the
sensitivity of the results to the extreme assumption that the two shocks were perfectly correlated.
While this still (by construction) results in the same length of time at the ELB and the same
amount of cumulative bond purchases as shown in Figure 6, it changes the trajectories and their
correlations, which could affect the results due to nonlinearities. The details of the simulations are
the same as described above and in Appendix C, except that er̂i,t and eβi,t are drawn from perfectly
correlated distributions for each i and t.

The results are shown in Table 6. Comparison with Table 5 demonstrates that the correlation
assumption has very little quantitative effect on the results. In particular, it remains the case that
Fed balance-sheet shocks have much smaller overall effects than shadow-rate shocks do and that a
significant portion of the effect of shadow-rate shocks operates through their endogenous effects on
term premia.

5.3. Discussion
The above results imply that the duration removal that occurred through Federal Reserve asset

purchases may have had significantly smaller effects on yields than has sometimes been suggested.
For example, summarizing the empirical literature, Williams (2014) concludes that each $600 billion
of asset purchases likely reduced the ten-year yield by 15 to 25 basis points. The Fed bought nearly
$4 trillion of securities in total, so if the Williams estimates are interpreted as entirely reflecting
duration removal they suggest an effect of the duration channel that is about three times larger
than the one produced by the model.

Yet the empirical literature is far from conclusive that the duration channel is the only—or
even the primary—channel through which QE operates. Evidence in Krishnamurthy and Vissing-
Jorgensen (2011) and Bauer and Rudebusch (2015), for example, indicates that the signaling channel
may have been the most important aspect of asset purchases. The simulations above are consistent
with those results. Furthermore, it may be that previous empirical work on QE has confused the
duration channel with the link between policy expectations and term premia that emerges in the
model of this paper. For example, some empirical studies assume that declines in term premia
around QE announcements must be due to duration effects (e.g., Gagnon et al., 2011; Christensen
and Rudebusch, 2012). The model shows that this is not necessarily true. The signaling channel of
bond purchases (or explicit forward guidance that is issued concurrently with QE announcements)
can also lower the term premium through its effect on interest-rate volatility.28

28It is also worth repeating that the bond-supply effects generated by the model are consistent with evidence that
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These observations show that the effects of shadow-rate and Fed balance-sheet shocks produced
in the model simulations are plausible with respect to the data. Yet a question still remains about
why those effects have the magnitudes that they do. In particular, one may wonder why $4 trillion
of asset purchases “only” buys a 47-basis-point reduction in the ten-year yield. This is a difficult
question to answer, because the quantitative outcomes of the simulations depend on all of the model
parameters, starting values, shock processes, and other simulation choices. However, two features
of the model seem particularly noteworthy.

First, as discussed throughout the paper, duration effects are attenuated by the ELB. The same
amount of asset purchases would have had a larger effect in the simulations if those purchases had
taken place in an environment with the short rate closer to normal levels. Depending on the details,
the factor loadings shown in Figure 4 suggest that the duration effects could have been over 50%
larger in such a situation.

Second, the yield data themselves place some limits on how large the duration channel can be
within the context of the type of structural model used here. This can be seen most easily by
returning to the one-factor model of Section 3. Equation (16) shows that excess returns are linear
in bond supply. Thus, any change in parameters that increases the sensitivity of excess returns to
bond supply must increase the average level of excess returns in equal proportion. To triple the
effects of QE (for example, by tripling the value of the parameter a), one would also have to accept
a tripling of the average risk premium. In the model of the paper, the parameters are set to match
the 6.7% average level of the ten-year yield observed in the data. A tripling of the risk premium
would raise this average to 9.7%—a value that would easily be rejected empirically. (The parameter
change would also increase the volatility of yields significantly beyond the observed levels.) Thus,
while one could generate larger effects of QE in the model through alternative choices of parameters,
nearly any such modification would put the model at odds with other features of the data.29

5.4. Policy options in alternative environments

Because they take different units, it is not meaningful to ask whether the shadow-rate shocks or
the bond-supply shocks are “more powerful” in general. However, one can compare their relative
effectiveness in different states of the world. One reason that such a comparison may be interesting
is that policymakers, who presumably have some notion of the implict cost of implementing each
type of policy, may favor one over the other depending on the circumstances.

To measure relative efficacy, I compute the size of the bond-supply shock that would be required
to generate the same effect on the τ -period yield that a 25-basis-point decline in the shadow rate
has. Specifically, again letting y(τ) (r̂t, βt, Qt) denote the τ -maturity yield as a function of the state
variables, I solve for ∆β such that

y(τ) (r̂t − .0025, βt, Qt) = y(τ) (r̂t, βt + ∆β,Qt) (32)

does not stem from QE episodes. As noted in Section 4.4, the effects of bond supply in the model largely match
those estimated in regressions of the Greenwood-Vayanos (2014) type. That evidence arguably gives a cleaner read
on duration effects than the QE event studies do, because it avoids some of the identification problems of event
studies, is not contaminated by a monetary-policy signaling channel, and is largely free of distortions associated with
the ELB.

29One might worry that the parameters matched to the full-sample moments are not appropriate for the period
when QE was conducted. However, Table 3 and other results presented above show that the model continues to do
a good job of describing the behavior of yields during this time.
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using a range of initial values (r̂t, βt). I repeat an analagous exercise to solve for the relative
efficacy of Fed balance-sheet shocks, ∆Q.30 In an affine model, the values ∆β and ∆Q that solve
these equations are constant across the state space. In the shadow-rate model, as was evident in
Figures 4 and 5, the elasticities of yields with respect to shadow-rate and bond-supply shocks differ
in different areas of the state space, and therefore their relative efficacy also differs.

Figure 8 presents contour maps of relative efficacy for 10- and 15-year yields, with darker colors
indicating bigger values—i.e., areas of the space in which bond-supply shocks have relatively large
effects compared to those of shadow-rate shocks. Both βt and Qt achieve their greatest relative
efficacy in the southwest quadrant of the maps, where both r̂t and βt are deeply negative. As
noted earlier, both bond-supply and shadow-rate shocks are attenuated when the shadow rate is
below the ELB. However, when βt is negative (i.e., more duration in the market), the attenuation
of the shadow-rate shocks is greater than the attenuation of the bond-supply shocks.31 Thus, for
example, a shock to βt of about 0.10 or a shock to Qt of about 0.14 in this region is sufficient to
lower the ten-year yield by the same amount that a 25-basis-point shock to r̂t would achieve. In
contrast, at the unconditional means of the states, the respective sizes of the βt and Qt shocks
required are closer to 0.14 and 0.20, respectively.

Interestingly, this high-relative-efficacy region for the bond-supply shocks is approximately the
region of the space in which the Fed asset purchases were conducted in practice. The greatest
removal of duration from the market occurred during the QE and maturity extension programs that
mostly operated between 2011 and 2013. During that time, empirical shadow-rate term-structure
models show r̂t near its nadir, with the Krippner (2012) estimate, for example, averaging -4.5% over
those three years. Meanwhile, the Treasury was lengthening the maturities of its issuance, so that
the average duration outstanding stood near the upper end of its historical range. Moreover, fiscal
expansion increased the total quantity of Treasury debt outstanding, further boosting the amount
of interest-rate risk held by investors.32 Thus, one possible interpretation of the Fed’s actions
during this time is that it saw the cost-benefit calculations around its policy options changing.
During normal times, the Fed has a revealed preference for not engaging in asset purchases. This
preference may have shifted during the ELB period if the FOMC perceived that the marginal
benefits of forward guidance declined sufficiently relative to those of asset purchases.

6. Conclusion

This paper has augmented a model of risk-averse arbitrage in the bond market to account for the
effective lower bound on nominal interest rates. At and near the ELB, the effects of bond supply are
damped, the expectations and term-premium components of yields become endogenously correlated,
and shocks to short-rate expectations have their largest effect on intermediate-maturities forward
rates. When calibrated to the long-run features of yields, the model successfully reproduces the
conditional moments of the yield curve, particularly near the ELB, as well as empirical evidence on
the effects of bond supply on yields. When considering shocks that approximate the experience of
unconventional monetary policy in the U.S., the main finding is that the duration effects of shocks

30Note that the solution for ∆β is the same regardless of whether we use the baseline process (23) or include Qt
in the model as in (29). In the latter case, the initial value of Qtis set to zero.

31This result can be seen to some extent in Figure 5, panel B.
32Over the 2011 - 2013 period, the maturity-weighted debt-to-GDP ratio averaged 4.4, compared to a pre-ELB

average of 2.4, according to the CRSP data.
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to the Federal Reserve’s balance sheet are relatively weak, accounting for less than one-quarter of
the overall change in the ten-year yield and even less at shorter maturities. Instead, the majority of
the effects of such policies come through the expectations component of yields. The term premium
effects of changes in anticipated short rates—a channel that does not exist in affine models and has
been ignored by previous literature—also plays a significant role.

In addition to their implications for policy choices during future ELB episodes, the results
are relevant for empirical work in this area. For example, economists have sometimes studied
questions about the yield curve at the ELB (including questions about unconventional monetary
policy) by extrapolating the results of linear models estimated on pre-ELB data. The analysis here
suggests that that approach could be quite dangerous. There are reasons to expect factor loadings to
change both quantitatively and qualitatively at the ELB, with some transmission channels becoming
diminished and others enhanced. Because bond prices are forward-looking and depend on both
expectations and uncertainty, nonlinearities matter and can operate on the term structure in subtle
ways.

Acknowledgements

For helpful comments and discussions I thank Stefania D’Amico, Sam Hanson, Don Kim, Dimir-
tri Vayanos, Andrea Vedolin, and seminar participants at the Federal Reserve Bank of Chicago,
the 2017 FRB San Francisco/Bank of Canada/Simon Fraser University conference on Advances
in Fixed Income and Macro-Finance Research, the 2018 American Finance Association meetings,
and the 2018 Banque de France Workshop on Monetary Policy and Asset Prices. Zachry Wang
provided excellent research assistance. The views expressed here do not reflect official positions of
the Federal Reserve.

References

Altavilla, C., Carboni, G., Motto, R., 2015. Asset purchase programmes and financial markets:
Lessons from the euro area. European Central Bank Working Papers, no 1864.

Altavilla, C., Giannone, D., 2016. The effectiveness of non-standard monetary policy measures:
Evidence from survey data. Journal of Applied Econometrics 32, 952–964.

Bauer, M. D., Rudebusch, G. D., 2014. The signaling channel for federal reserve bond purchases.
International Journal of Central Banking 10 (3), 233–289.

Bhattarai, S., Eggertsson, G. B., Gafarov, B., 2015. Time consistency and the duration of govern-
ment debt: A signalling theory of quantitative easing. NBER Working Paper 21336.

Cahill, M. E., D’Amico, S., Li, C., Sears, J. S., 2013. Duration risk versus local supply channel
in treasury yields: Evidence from the federal reserve’s asset purchase announcements. Federal
Reserve Board FEDS working paper 2013-35.

Carpenter, S. B., Ihrig, J. E., Klee, E. C., Quinn, D. W., Boote, A. H., 2015. The federal reserve’s
balance sheet and earnings: A primer and projections. International Journal of Central Banking
11 (2), 237–283.

22



Christensen, J. H. E., Rudebusch, G. D., 2012. The response of interest rates to u.s. and u.k.
quantitative easing. Economic Journal 122, F237–414.

D’Amico, S., King, T. B., 2013. Flow and stock effects of large-scale treasury purchases: Evidence
on the importance of local supply. Journal of Financial Economics 108 (2), 425–448.

Femia, K., Friedman, S., Sack, B., 2013. The effects of policy guidance on perceptions of the fed’s
reaction function. Federal Reserve Bank of New York, Staff Report no.652.

Gagnon, J. E., Raskin, M., Remache, J., Sack, B. P., 2011. The financial market effects of the federal
reserve’s large-scale asset purchases. International Journal of Central Banking 7 (1), 3–43.

Gilchrist, S., Lopez-Salido, D., Zakrajsek, E., 2015. Monetary policy and real borrowing costs at
the zero lower bound. American Economic Journal: Macroeconomics 7 (1), 77–109.

Greenwood, R., Hanson, S., Rudolph, J. S., Summers, L. H., 2015a. Chapter 1: The optimal
maturity of government debt; chapter 2: Debt management conflicts between the u.s. treasury
and the federal reserve. Book chapters in in The $13 Trillion Question: How America Manages
Its Debt, edited by David Wessel, 43-89. Brookings Institution Press.

Greenwood, R., Hanson, S., Vayanos, D., December 2015b. Forward guidance in the yield curve:
Short rates versus bond supply. NBER Working Paper No. 21750.

Greenwood, R., Vayanos, D., 2014. Bond supply and excess bond returns. Review of Financial
Studies 27 (3), 663–713.

Gurkaynak, R. S., Sack, B., Wright, J. H., 2007. The u.s. treasury yield curve: 1961 to the present.
Journal of Monetary Economics 54 (8), 2291–304.

Haddad, V., Sraer, D. A., July 2015. The banking view of bond risk premia. Working Paper.

Hamilton, J. D., Wu, J. C., 2012. The effectiveness of alternative monetary policy tools in a zero
lower bound environment. Journal of Money, Credit and Banking 44 (s1), 3–46.

Hanson, S. G., 2014. Mortgage convexity. Journal of Financial Economics 113 (2), 270–299.

Hattori, M., Schrimpf, A., Sushko, V., 2016. The response of tail-risk perceptions to unconventional
monetary policy. American Economic Journal: Macroeconomics 8 (2), 111–36.

Hayashi, F., April 2016. Affine term structure pricing with bond supply as factors. FRB Atlanta
CQER Working Paper 2016-1.

Joyce, M. A. S., Lasaosa, A., Stevens, I., Tong, M., 2011. The financial market impact of quantitative
easing in the united kingdom. International Journal of Central Banking 7 (3), 32–49.

Kim, D. H., Singleton, K. J., 2012. Term structure models and the zero bound: An empirical
investigation of japanese yields. Journal of Econometrics 170 (1), 32–49.

King, T. B., 2015. A portfolio-balance approach to the nominal term structure. FRB Chicago
Working Paper 2013-18.

Krippner, L., March 2012. Modifying gaussian term structure models when interest rates are near
the zero lower bound. CAMA Working Paper 2012-05.

23



Krishnamurthy, A., Vissing-Jorgensen, A., 2011. The effects of quantitative easing on interest rates:
Channels and implications for policy. Brookings Papers on Economic Activity (2), 215–265.

Malkhozov, A., Mueller, P., Vedolin, A., Venter, G., 2016. Mortgage risk and the yield curve. Review
of Financial Studies 29 (5), 1220–53.

Monfort, A., Pegoraro, F., Renne, J.-P., Roussellet, G., forthcoming. Staying at zero with affine
processes: An application to term structure modeling. Journal of Econometrics.

Newey, W. K., West, K. D., 1987. A simple, positive semi-definite, heteroskedasticity and autocor-
relation consistent covariance matrix. Econometrica 55 (3), 703–8.

Rogers, J. H., Scotti, C., Wright, J. H., 2014. Evaluating asset-market effects of unconventional
monetary policy: A cross-country comparison. Economic Policy 29 (80), 749–799.

Swanson, E. T., 2011. Let’s twist again: A high-frequency event study analysis of operation twist
and its implications for qe2. Brookings Papers on Economic Activity (1), 151–88.

Swanson, E. T., 2017. Measuring the effects of federal reserve forward guidance and asset purchases
on financial markets. NBER Working Paper 21816.

Vayanos, D., Vila, J.-L., November 2009. A preferred-habitat model of the term structure of interest
rates. NBER Working Paper 15487.

Williams, J. C., January 2014. Monetary policy at the zero lower bound: Putting theory into
practice. Hutchins Center on Fiscal and Monetary Policy at Brookings, January 16.

Woodford, M., 2012. Methods of policy accommodation at the interest-rate lower bound. Federal
Reserve Bank of Kansas City, Jackson Hole symposium, September 16.

Wright, J., 2012. What does monetary policy do to long-term interest rates at the zero lower bound?
Economic Journal 122, F447–66.

Wu, J. C., Xia, F. D., 2016. Measuring the macroeconomic impact of monetary policy at the zero
lower bound. Journal of Money, Credit, and Banking 48 (2-3), 253–291.

24



Appendices

Appendix A. Approximate solution to the one-factor model

I look for coefficients A
(τ)
t that jointly satisfy (7) and (15) for all maturities τ and all values of

the shadow rate r̂t.
Log bond returns can be decomposed as,

dp
(τ)
t = Et

[
dp

(τ)
t

]
+
∂p

(τ)
t

∂r̂t
σdBt (A.1)

so,

cov[dp
(τ)
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(s)
t ] =
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(s)
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Expanding (7) and (8), time-t log bond prices are

p
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t = −
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Substituting (A.2),

p
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Taking the derivative,
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Approximating A
(τ)
t by setting second derivatives in this expression to zero,

A
(τ)
t = −∂p

(τ)
t

∂r̂t
≈
∫ τ

0

∂Et[rt+s]

∂r̂t
ds

=

∫ τ

0

e−κsEt

[
∂rt+s
∂r̂t+s

]
ds

(A.6)

where the last equality follows because r̂t is a standard Ornstein-Uhlenbeck process. The term in
brackets is equal to 1 if r̂t+s is above the ELB and 0 otherwise. Therefore, its expectation is just
the probability that r̂t+s > b, and we have
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A
(τ)
t ≈

∫ τ

0

e−κsΦ
(s)
t ds (A.7)

which is the result given in the text. (One can also show this last step by directly differentiating
(13) with respect to r̂t.)

Appendix B. Solution Algorithm

Consider a small but finite time interval ∆. For τ > ∆ we have

p
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From (7), (23), and (25), the expectations terms on the right-hand side are given by
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and similarly for Et
[
dpτ−∆
t+∆

]
, where we have made use of the approximation
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Note that the approximation errors in (B.1) through (B.3) vanish as ∆ goes to zero.
Discretize the state and maturity space into Nτ× Nr̂×Nβ nodes. Let τn, r̂n, and βn denote the

values of the maturity and state variables at node n. Set p (0, r̂t, βt) = −max [r̂t, b] for all βn. Let
π (r̂t+∆, βt+∆|r̂t, βt) be the conditional PDF of the states associated with the laws of motion (12)
and (24). Finally, transform log prices from the time/maturity domain to the state-space domain
by writing them as a function p(.):

p
(τ)
t = p (τ, r̂t, βt) (B.4)

Our objective is to solve for this function by calculating state-contingent values of all of the objects
on the right-hand side of (B.1).

The algorithm proceeds as follows:

Step 0. Set i = 0. Begin with an initial guess of the pricing function p0(.). For example,
choose p0(τ, r̂t, βt) = −max [r̂t, b] for all τ , r̂t, βt.

Step 1. At each node n, evaluate the functions
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and

F i5 (τn, s, r̂n, βn) ≡
∫ ∫

{π (r̂, β|r̂n, βn)

[
ζ +

(
1− 2s

T

)
β

]
F i2 (τn −∆, s, r̂, β) dr̂dβ (B.9)

= Et

[[
ζ +

(
1− 2s

T

)
βt+∆

]
covt+∆

[
p

(τn−2∆)
t+2∆ , p

(s−∆)
t+2∆

] ∣∣∣∣ (r̂t, βt) = (r̂n, βn)

]
with all five functions set to zero when τ = 0.

Step 2. Update the pricing function by substituting the functions above for the moments in
(B.1) and evaluating them at each node. That is, calculate

pi+1 (τn, r̂n, βn) = F i1 (τn, r̂n, βn)−max [r̂n, b]

−a∆

2

T∑
s=1

[
F i4 (τn, s, r̂n, βn) + F i5 (τn, s, r̂n, βn)

]
+

∆

4

[
F i2(τn, r̂n, βn) + F i3(τn, r̂n, βn)

]
(B.10)

Set i = i+ 1.

Repeat steps (1) and (2) to convergence.

The expectations in Step 1 are computed numerically using the probability function π (.) and
the pricing function pi(.). The integration is performed by quadrature and, to ensure accuracy,
relies on a much finer grid than the price computation in Step 2 does. To obtain bond prices
over this refinement of the space, the values of pi(.) are interpolated between each pair of nodes,
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at each iteration, using a cubic spline. At the edges of the discretized space, to avoid explosive
behavior, prices are log-linearly extrapolated for the purposes of computing expectations. (So long
as the edges are far away from the region of the space that is being considered, the conditional
expectations used there have little influence on the results.)

In the baseline model of the paper, I use Nτ = 60, Nr̂ = 101, and Nβ = 25, for a total of 151, 500
nodes, distributed uniformly in each dimension over the intervals τ = [1, 60], r̂ = [−0.25, 0.35], and
β = [−6.0, 6.0]. Expanding the density of the nodes or their range beyond this point had no
noticeable effect on the results reported in the paper. The algorithm converges to three significant
digits in approximately 400 iterations.

Appendix C. Simulation details

This appendix describes the construction of the simulated distributions of the state variables
used in the pseudo event study, as depicted in Figure 6.

Within each simulation i, I draw a discrete quarterly series of shadow-rate shocks {er̂i,1, ..., er̂i,28},
each of which represents the change in r̂t over the course of each quarter that was unanticipated as
of the beginning of that quarter. I.e., ei,t = r̂t − Et−1[r̂t]. Without further restrictions each shock
has mean zero and standard deviation σ̃ given by

σ̃ =
1− e−κ

κ
σ (C.1)

However, ex post it clearly had to be the case that the average shadow-rate shock during the ELB
period was negative. To ensure that this condition is satisfied, for each simulation i, I draw the
series of shadow-rate shocks from the distribution N [µi, σ̃], where µi < 0 is chosen to make the
terminal value of the shadow rate r̂i,28 exactly equal b. I reject any draw in which the simulated
value of r̂t ever rises above b.

To determine the size of the Fed balance-sheet shocks {eQi,1, ..., eQi,28}, note that equation (27)
implies that changes in the supply factors translate into percentage changes in 10-year-equivalent
bonds as follows:

%∆10YEt+s =

∫ T
0
τ
[(

1− 2τ
T

)
(βt+s +Qt+s − βt −Qt)

]
dτ∫ T

0
τ
[
ζ +

(
1− 2τ

T

)
(βt +Qt)

]
dτ

(C.2)

= −∆βt+s + ∆Qt+s
3ζ − βt −Qt

Since the eβt are taken to be zero in this exercise, plugging in the actual percentage change in 10-year
equivalents that resulted from QE allows one to uniquely solve for ∆Qt+s, given initial values. In
particular, at the end of the simulation we must have Q28 = 0.32 in order to achieve a reduction in
ten-year equivalents of 21% relative to a case in which Q28 = 0.33

This calculation provides a value for the cumulative effect of the Fed balance-sheet shocks on
bond supply, but it does not tell us about the individual values of those shocks. I take a con-
servative approach by considering the widest possible distribution for the shocks, while respecting

33The difference between the path of ten-year equivalents in the simulation and the counterfactual case in which

no QE occurs is − ∆Qt+s

3ζ−βt−Qt
= − Q28

3(0.37)+0.42
. Setting this equal to −0.21 gives Q28 = 0.32.
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the empirical facts that (1) QE balances never fell below their starting value of zero, and (2) QE
attained its maximum value at the end of the ELB period. Specifically, for each simulation i,
I take draws {ẽi,1, ..., ẽi,28} from N [0, 1] and compute the balance-sheet shocks {eQi,1, ..., e

Q
i,28} =

σi{ẽi,1, ..., ẽi,28}, where σi is the the largest value that is consistent with min[{Qi,1, ..., Qi,28}] > 0
and max[{Qi,1, ..., Qi,28}] = Qi,28.
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Table 1.  Regressions of long-term yields on Treasury duration and short-term yields  
 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.140 
(0.095) 

0.002 
(0.101) -2.17 

 0.842*** 
(0.050) 

2.271*** 
(0.785) 1.84 0.951 

10y yield 0.221* 
(0.121) 

0.058 
(0.116) -2.25 

 0.736*** 
(0.060) 

3.028** 
(1.203) 1.92 0.901 

15y yield 0.261* 
(0.133) 

0.110 
(0.126) -2.05 

 0.688*** 
(0.065) 

2.966** 
(1.276) 1.80 0.870 

 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.102* 
(0.373) 

-0.002 
(0.060) -2.57 

 0.901*** 
(0.032) 

1.910*** 
(0.217) 4.74 0.981 

10y yield 0.187** 
(0.094) 

0.053 
(0.088) -2.25 

 0.794*** 
(0.048) 

2.328*** 
(0.429) 3.61 0.942 

15y yield 0.227** 
(0.109) 

0.113 
(0.108) -1.62 

 0.746*** 
(0.056) 

2.167*** 
(0.537) 2.68 0.915 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.179* 
(0.010) 

-0.058 
(0.083) -2.65 

 0.850*** 
(0.049) 

2.097*** 
(0.679) 1.89 0.952 

10y yield 0.250* 
(0.129) 

-0.056 
(0.093) -2.81 

 0.743*** 
(0.062) 

2.940*** 
(1.043) 2.15 0.902 

15y yield 0.282** 
(0.140) 

-0.027 
(0.101) -2.74 

 0.696*** 
(0.070) 

2.962*** 
(1.128) 2.06 0.871 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.126* 
(0.067) 

-0.044 
(0.051) -2.86 

 0.906*** 
(0.032) 

1.818*** 
(0.205) 4.77 0.981 

10y yield 0.207** 
(0.104) 

-0.058 
(0.076) -2.80 

 0.800*** 
(0.050) 

2.301*** 
(0.698) 4.32 0.943 

15y yield 0.239** 
(0.118) 

-0.013 
(0.095) -2.43 

 0.751*** 
(0.600) 

2.218*** 
(0.463) 3.34 0.915 

 
Notes:  Each row in each table reports the estimates of a single regression, where the dependent variable is a longer-term 
Treasury yield, as indicated in the first column.  Each regression uses two independent variables: either the weighted-
average maturity of Treasury debt in public hands or the maturity-weighted Treasury-debt-to-GDP ratio and either the 
one- or two-year zero-coupon Treasury yield.  In each regression, the coefficient on each variable is allowed to differ 
between the period when the ELB was not binding (prior to December 2008) and the period when it was binding 
(December 2008 through December 2015), with the break accomplished using interactive dummy variables.  The samples 
begin in August 1971 for the 5- and 10-year maturities and in December 1971 for the 15-year maturity.  Yield data are 
Gurkaynak et al. (2007) zero-coupon yields.  Treasury debt variables are constructed from CRSP data, following 
Greenwood and Vayanos (2014).  All data are monthly.  Newey-West standard errors, using 36 lags, are reported in 
parentheses, and statistical significance at the 10% (*), 5% (**), and 1% (***) levels is indicated by asterisks.  The t statistics, 
reported in italics, test the significance of the break in each of the two coefficients in each regression. 
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Table 2.  Model parameters 

  Bond supply  Short rate  Risk 
aversion 

 T 𝜅" 𝜎" z  µ k s b  a 
[1]  Shadow-rate model 60 0.021 0.20 0.37  4.9% 0.019 0.77% 0.17%  0.15 
[2]  Affine model – base 60 0.021 0.20 0.37  4.9% 0.019 0.77% -∞  0.15 
[3]  Affine model – recalibrated 60 0.021 0.20 0.39  5.2% 0.019 0.70% -∞  0.17 
Notes: The table shows the calibrated values of the parameters in the baseline two-factor shadow-rate model, as well as in two models 
with affine short-rate processes.  In the first affine model, all parameters (except the ELB) are the same as in the shadow-rate model.  
In the second affine model, the parameters are recalibrated to match the same set of unconditional yield-curve moments that the 
shadow-rate model matches.  Details of the calibration strategy are provided in the text. 

 

 

 

 
Table 3.  Conditional moments of yield curve in data vs. two-factor models 

Short rate below 0.68% 
 

% of obs. 3m rate 
Slopes (to 3m) 

2Y 5Y 10Y 15Y 
Conditional means 
Data 16% 0.2% 0.3% 1.3% 2.5% 3.1% 
Shadow-rate model 15% 0.2% 0.4% 1.2% 2.4% 3.5% 
Affine Model – base calibration 15% -1.3% 0.7% 1.8% 3.4% 4.5% 
Affine Model – recalibrated  10% -0.9% 0.7% 1.8% 3.3% 4.5% 
Conditional standard deviations 
Data  0.1% 0.3% 0.6% 0.8% 0.8% 
Shadow-rate model  0.2% 0.3% 0.7% 1.1% 1.4% 
Affine Model – base calibration  1.7% 0.3% 0.7% 1.3% 1.7% 
Affine Model – recalibrated  1.5% 0.3% 0.7% 1.2% 1.5% 

 
Short rate above 0.68% 

 
% of obs. 3m rate 

Slopes (to 3m) 
2Y 5Y 10Y 15Y 

Conditional means 
Data 84% 6.1% 0.5% 0.9% 1.3% 1.5% 
Shadow-rate model 85% 6.0% 0.3% 0.7% 1.3% 1.8% 
Affine Model – base calibration 85% 6.0% 0.3% 0.7% 1.2% 1.7% 
Affine Model – recalibrated 90% 5.9% 0.3% 0.7% 1.3% 1.8% 
Conditional standard deviations 
Data  3.1% 0.9% 1.3% 1.6% 1.7% 
Shadow-rate model  3.2% 0.3% 0.8% 1.5% 1.9% 
Affine Model – base calibration  3.2% 0.3% 0.8% 1.5% 2.0% 
Affine Model – recalibrated  3.0% 0.3% 0.8% 1.4% 1.8% 

 
Notes: The table shows conditional moments of zero-coupon yields simulated from the shadow-rate and affine models, based on the 
model parameters shown in Table 2, together with the corresponding moments from the data.  Model results are based on 1 million 
simulations of the state variables.  Yield data are from the Gurkaynak et al. (2007) dataset and cover the period August 1971 – December 
2015, except for the 15-year yields, which begin in December 1971.  



32 
 

Table 4.  Model-implied relationships among long-term yields, shorter-term yields, and 
Treasury supply 

A. Sensitivity of long-term yields to WAM 

Shadow 
rate 

Sensitivity to WAM  Sensitivity to WAM, 
holding 1Y yield fixed  Sensitivity to WAM, holding 

2Y yield fixed 
5Y 10Y 15Y  5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.10 0.17 0.22  0.08 0.16 0.21  0.06 0.14 0.20 
4% 0.10 0.17 0.22  0.08 0.16 0.21  0.06 0.14 0.19 
2% 0.09 0.17 0.21  0.08 0.15 0.20  0.06 0.14 0.19 
1% 0.09 0.16 0.21  0.08 0.15 0.20  0.06 0.13 0.19 
0% 0.08 0.15 0.20  0.06 0.14 0.19  0.05 0.12 0.18 
-1% 0.07 0.14 0.19  0.05 0.12 0.18  0.04 0.11 0.16 
-2% 0.05 0.13 0.18  0.04 0.11 0.16  0.03 0.10 0.15 
-4% 0.03 0.10 0.15  0.02 0.08 0.13  0.02 0.07 0.13 

 
Notes: The first group of columns reports the model-implied sensitivity of 5-, 10-, and 15-year yields to the weighted-average 
maturity of Treasury debt at various values of the shadow rate.  The second and third groups of columns report these sensitivities, 
holding fixed the level of the one-year or the two-year yield.  The calculations, which are given in the text, rely on the derivatives 
of yields with respect to the shadow-rate and the bond-supply factors (𝑎%̂

(() and 𝑎"
(()), evaluated under the baseline parameter 

values (line 1 of Table 2). 
 
 

 

B. Sensitivity of long-term yields to shorter-term yields 
Shadow 
rate 

Sensitivity to 1Y  Sensitivity to 2Y 
5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.9 0.7 0.6  0.9 0.7 0.6 
4% 0.9 0.7 0.6  0.9 0.7 0.6 
2% 0.9 0.7 0.6  0.9 0.8 0.6 
1% 0.9 0.8 0.7  0.9 0.8 0.7 
0% 1.2 1.2 1.0  1.1 1.0 0.9 
-1% 2.3 2.5 2.3  1.4 1.5 1.4 
-2% 5.8 7.1 7.0  2.0 2.5 2.4 
-4% 78.7 135.1 146.6  5.5 9.4 10.2 

 
Notes: The table reports the model-implied sensitivity of 5-, 10-, and 15-year yields to 1- and 
2-year yields, holding the bond-supply factor fixed, at various values of the shadow rate.  The 
coefficients are calculated as the ratio 𝑎%̂

(()/𝑎%̂
(+) or 𝑎%̂

(()/𝑎%̂
(,) where 𝑎%̂

(() is the derivative of 
the yield at maturity t with respect to �̂� under the baseline parameter values (line 1 of Table 
2). 

  

ELB 

ELB 
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Table 5.  Decompositions of yield responses to unconventional policy shocks (zero 
correlation) 

A.  Contemporaneous responses (bps) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

 [3] 

 Term premium 
component 

 [4] 
2 years -59 

(-82, -39) 
-22 

(-25, -16) 
 -13 

(-14, -12) 
7 

(5, 8) 
-90 

(-116, -63) 

5 years -90 
(-106, -69) 

-51 
(-52, -47) 

 -30 
(-31, -26) 

12 
(9, 14) 

-160 
(-177, -135) 

10 years -102 
(-109, 91) 

-70 
(-76, -62) 

 -47 
(-50, -41) 

12 
(8, 16) 

-207 
(-211, -199) 

15 years -98 
(-100, -92) 

-72 
(-82, -63) 

 -57 
(-60, -49) 

10 
(7, 14) 

-215 
(-219, -210) 

 

B.  Total variance (bps2/100) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

[3] 
 

Term premium 
component 

 [4] 
2 years 19 

(13, 26) 
5 

(2, 9) 
 0.0 

(0.0, 0.2) 
0.2 

(0, 0.3) 
24 

(15, 34) 

5 years 18 
(10, 30) 

13 
(5, 24) 

 0.2 
(0.2, 0.4) 

1.0 
(-0.8, 2.3) 

32 
(17, 54) 

10 years 16 
(8, 29) 

19 
(8, 40) 

 0.7 
(0.5, 0.9) 

2.4 
(-1.8, 5.3) 

39 
(19, 71) 

15 years 14 
(6, 25) 

19 
(8, 41) 

 1.0 
(0.7, 1.3) 

3.1 
(-2.0, 6.8) 

37 
(17, 70) 

 
 
Notes: The table summarizes the results of simulations of unconventional monetary policy in the shadow-rate model.  Panel A 
reports the cumulative response of the spot zero-coupon yield curve in model simulations based on the distribution of state-variable 
trajectories shown in Figure 6, summing the responses to the shocks in each period.  Panel B reports the total variance in yields in 
the simulations, relative to a baseline scenario in which no shocks occur.  In both cases, for each maturity, the median response is 
reported, with the 5% and 95% quantiles in parentheses below.  The total effect on the yield of each maturity is shown in the last 
column.  The bond-supply and shadow-rate shocks are simulated both separately and together to obtain the decomposition reported 
in the other columns.  The “interaction” column represents the effect of nonlinearities that cause the sum of the two individual 
simulations to differ from that of the joint simulation.  For the shadow-rate shocks, the change in the expectations component is 
calculated from equation (13), while the change in the term-premium component is calculated as the difference between the total 
change in yields and the change in the expectations component.  By construction, the individual components sum to the totals in 
each simulation, but the median values in columns [2] through [5] may not sum to the values in column [6] because of the asymmetry 
in the distributions across simulations.  
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Table 6.  Decompositions of yield responses to unconventional policy shocks (perfect 
correlation) 

A.  Contemporaneous responses (bps) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

 [3] 

 Term premium 
component 

 [4] 
2 years -58 

(-80, -36) 
-22 

(-25, -15) 
 -13 

(-13, -12) 
6 

(5, 7) 
-86 

(-111, -57) 

5 years -87 
(-101, -68) 

-49 
(-50, -46) 

 -27 
(-28, -25) 

9 
(7, 11) 

-154 
(-169, -128) 

10 years -96 
(-97, -95) 

-66 
(-68, -64) 

 -41 
(-43, -38) 

9 
(7, 11) 

-196 
(-199, -189) 

15 years -93 
(-95, -91) 

 

-68 
(-75, -63) 

 -48 
(-51, -45) 

7 
(6, 10) 

-201 
(-206, -196) 

 

B.  Total variance (bps2/100) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

[3] 
 

Term premium 
component 

 [4] 
2 years 18 

(12, 25) 
5 

(2, 9) 
 0.0 

(0.0, 0.1) 
0.5 

(0.1, 0.7) 
24 

(19, 30) 

5 years 17 
(9, 29) 

13 
(5, 23) 

 0.3 
(0.2, 0.4) 

0.8 
(-0.5, 1.9) 

32 
(15, 54) 

10 years 16 
(8, 27) 

19 
(8, 38) 

 0.7 
(0.6, 0.8) 

1.4 
(-2.1, 3.5) 

37 
(18, 68) 

15 years 14 
(6, 24) 

18 
(9, 39) 

 0.9 
(0.8, 1.2) 

1.7 
(-2.7, 4.2) 

35 
(16, 64) 

 
 
Notes: The table summarizes the results of simulations of unconventional monetary policy in the shadow-rate model, under the 
assumption that the realized shocks to the shadow rate and the Fed balance sheet were perfectly correlated.  Panel A reports the 
cumulative response of the spot zero-coupon yield curve in model simulations based on the distribution of state-variable trajectories 
described in the text, summing the responses to the shocks in each period.  Panel B reports the total variance in yields in the 
simulations, relative to a baseline scenario in which no shocks occur.  In both cases, for each maturity, the median response is 
reported, with the 5% and 95% quantiles in parentheses below.  The total effect on the yield of each maturity is shown in the last 
column.  The bond-supply and shadow-rate shocks are simulated both separately and together to obtain the decomposition reported 
in the other columns.  The “interaction” column represents the effect of nonlinearities that cause the sum of the two individual 
simulations to differ from that of the joint simulation.  For the shadow-rate shocks, the change in the expectations component is 
calculated from equation (13), while the change in the term-premium component is calculated as the difference between the total 
change in yields and the change in the expectations component.  By construction, the individual components sum to the totals in 
each simulation, but the median values in columns [2] through [5] may not sum to the values in column [6] because of the asymmetry 
in the distributions across simulations.  
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A. B. 

 
  
Figure 1.  Conditional moments of short rate at various horizons.  The figure shows the conditional mean (panel A) 
and standard deviation (panel B) of the time t+s short rate, conditional on the value of the shadow rate in time t, where s 
= 2, 5, 10, and 15 years.  The solid lines show these moments in the shadow-rate model, using the parameters shown in 
the top line of Table 2.  The dashed lines show the moments in an affine model with the same parameter values but with 
the ELB removed. 

 

 

 Shadow rate at 5.2% Shadow rate at -2.7% 

  
Figure 2.  Comparative statics of bond supply in the one-factor model.  The figure shows the yield curves generated 
by the one-factor model at two different values of the shadow rate �̂�.  and using two different values of the parameter z, 
which represents the total quantity of bonds in the economy.  The baseline value of z = 0.42 (shown in black) is calibrated 
to allow the model to match the average value of the ten-year yield.  The value of z = 0.21 (shown in red) considers a 
hypothetical 50% reduction in bond supply relative to the baseline case.  The left-hand panel compares the two yield 
curves resulting from these parameter values when the shadow rate is at the mean value of the short rate (5.2%), while the 
right-hand panel shows the curves when the shadow rate is at -2.7%, its average during the ELB period according to the 
Krippner (2012) estimates.  The model is solved numerically using the other parameters values described in the text.   
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A. Spot yield curve 

      Shadow rate starts at 5.2% Shadow rate starts at -2.7% 
 

      

 
 

B.  Forward-rate curve 
      Shadow rate starts at 5.2% Shadow rate starts at -2.7% 
 

         
 

 

Figure 3.  Response to shadow-rate shocks in the one-factor model.  The figure shows the model-implied response 
of the yield curve (panel A) and the forward-rate curve (panel B) to one-standard-deviation shock to the shadow rate in 
the period when the shock occurs.  The pink region shows the change in the expectations component of yields, while the 
blue region shows the change in the term premium.  The change in the expectations component is calculated from equation 
(13), while the change in the term-premium component is calculated as the difference between the total change in yields 
and the change in the expectations component.  Responses are evaluated starting both from a shadow rate at the mean 
value of the short rate (5.2%) and a value of -2.7%, its average during the ELB period according to the Krippner (2012) 
estimates.  The model is solved numerical using the parameter values described in the text. 

  

maturity 

maturity 

Response 
(bp) 

Response 
(bp) 
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Figure 4.  Factor loadings across values of the shadow rate at b = 0.  The figure shows the model-implied factor 
loadings for the t-period yield, conditional on the time-t value of the shadow rate, where t = 2, 5, 10, and 15 years.  The 
solid lines show the loadings in the shadow-rate model, under the parameters shown in line 1 of Table 2.  The dashed lines 
show the loadings in an affine model with the same parameter values but with the ELB removed (line 2 of Table 2).  The 
bond-supply factor bt is held fixed at its mean of zero. 
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A.  �̂�.= 5.2% 

 

B.  �̂�.  = -2.7% 

 

Figure 5.  Factor loadings across values of the supply factor.  The figure shows the model-implied factor loadings for 
the t -period yield, across time-t values of the bond-supply factor, where t = 2, 5, 10, and 15 years.  The solid lines show 
the loadings in the shadow-rate model, under the parameters shown in line 1 of Table 2.  The dashed lines show the 
loadings in an affine model with the same parameter values but with the ELB removed (line 2 of Table 2).  In panel A, the 
shadow rate is held fixed at the mean value of the short rate (5.2%), while in panel B it is held fixed at -2.7%, its average 
value during the ELB period according to the Krippner (2012) estimates. 
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Figure 6.  Distributions of state-variable trajectories in model simulations.  The figures show the distributions of 
100,000 simulated paths of the state variables during the ELB period, in terms of the pointwise medians (solid lines) and 
5% and 95% quantiles (dotted lines).  The simulations are constructed to exactly match the observed values of the short-
term interest rate and the percentage of ten-year equivalent bonds held by the Fed as of December 2008 and December 
2015, with the intermediate values simulated from the model as described in Appendix C.  For the purposes of 
presentation, in panel B the balance-sheet state variable (Qt) is converted to a cumulative percentage change in 10-year 
equivalent bonds held by investors, relative to the amount that would have been outstanding in the absence of shocks, 
using equation (27). 

 

 

A.  Spot yield curve B.  Forward-rate curve 

    

Figure 7.  Cumulative yield-curve responses in model simulations.  The figure shows the cumulative response of 
bond yields (panel A) and forward rates (panel B) in model simulations based on the distribution of state-variable 
trajectories shown in Figure 6.  The figures sum the contemporaneous responses to the shocks in each of the 28 simulated 
periods, without accounting for dynamics.  In each panel, the solid line shows the pointwise median and dashed lines show 
5% and 95% quantiles.    
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B.  Fed balance-sheet factor (Qt)  
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Figure 8.  Relative efficacy of bond-supply shocks across state values.  The figure shows contour maps of the 
effects of bond-supply shocks on 10- and 15-year yields, relative to the effects of shadow-rate shocks, in the baseline 
two-factor shadow-rate model.  Relative efficacy is calculated, for each yield, as the size of the bond-supply shock that 
would be necessary to equal the effects of a -25-basis-point shock to the shadow rate.  The values of this ratio are 
shown across different regions of the state space, with darker coloring indicating regions where the bond-supply shocks 
are relatively more powerful.  
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