Discussion of: Estimating DSGE Models with Forward Guidance by Kulish, Morley, and Robinson

Thomas King
Federal Reserve Bank of Chicago
9 January 2015

Contributions

- Add forward guidance to standard DSGE model
- Bring information from long-term yields into estimation
- Estimate "shadow rate"

Importance of forward guidance

Policy analysis

- Since 2008, this has been one of the main levers of monetary policy.
- Academic work offers little quantitative advice for policymakers.
- Hard to assess how effective policies have been ex post.

Model misspecification

- Standard DSGE models are not equipped to deal with this.
- Reduced-form (VAR) models will necessarily exhibit parameter instability at the ZLB.
 - The parameters depend on the horizon of FG.

A simple example

Consider this structural model:

$$y_t = a_0 + a_1 r_{t+1}$$

$$r_t = \max \left[b y_t + r_t^*, 0 \right]$$

Reduced form for y:

$$y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 r_{t-1}^*$$

But reduced-form parameters depend on whether constraint is expected to bind.

If not:

If at ZLB next period:

$$\phi_0 = a_0$$

$$\phi_0 = -a_0/a_1b$$

$$\phi_1 = 0$$

$$\phi_1 = 1/a_1b$$

$$\phi_2 = 0$$

$$\phi_2 = -b$$

Modeling strategy

- The paper exploits this dependence to identify expected duration of ZLB in each period.
 - Implicitly estimates time-varying VAR parameters at the ZLB.
 - Shadow rate is computed as Taylor-rule-implied FF rate.
- Finds agents expect ZLB to bind for about 8-9 qtrs throughout most of the post-2008 period.
- Calculates a large cumulative output loss due to ZLB constraint.

Comments

- Miscellaneous and minor:
 - Away from the ZLB agents assign zero probability to getting there.
 - Why not use observed risk premia for estimation?
 - How important is forward guidance? Could compute IRFs to a one-quarter "shock."
 - Very negative shadow rate depends on getting the trend right.
- Not so minor:
 - Nonlinearities and second moments may matter...

Nonlinearities (1)

- Model is log-linearized => Effectively no risk
 - Model appends shocks for risk and term premia
 - Better than nothing, but these should be endogenous.
 - May defeat the purpose of using long-term yields
 - More broadly, way in which these are modeled could matter a lot – parallel shifts?
- Second moments are always a problem for linearized DSGE models, but the issues are central in this case:
 - Crisis was all about risk.
 - ZLB and FG directly affect risk

Uncertainty about future short rate

Mean and 10% - 90% CI of 2-year ahead FF rate from Eurodollar options

Nonlinearities (2)

- In the model, agents' "expectations" about ZLB duration are assumed to be degenerate.
 - No uncertainty
 - This is not a second-order issue:
 - With nonlinearities, first and second moments are linked.
 - FG may work in part by reducing uncertainty about the path of rates.

Distribution of short rates at ZLB is not symmetric and depends on uncertainty.

Which one of these are the authors picking up? Which one do they want?

Liftoff horizon implied by mean vs. mode caps-based paths

Similar info from FRBNY Primary Dealer Survey

Nonlinearities (3)

- KMR estimates of ZLB duration do not vary much over time.
 - E.g., 8 qtrs at end of sample seems too long.
- Could this be because of the high sensitivity of macro data to FG in these models?

Mean FFF path crossing horizon vs. KMR expected ZLB duration

A possible way to sync things up

Recall:

$$y_t = a_0 + a_1 r_{t+1}$$

$$r_t = \max \left[b y_t + r_t^*, 0 \right]$$

- This becomes much easier to estimate if we have data on E[rt+1] directly.
- Why not incorporate survey or market data to get this?
 - At least, it could inform the priors.