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Abstract

This paper studies a class of optimizing, no-arbitrage models in which the

term structure of interest rates depends on the maturity structure of assets held

by investors. The key assumption is that the stochastic discount factor is a

function of the return on wealth. Portfolio choice matters for asset prices because

it affects the distribution of this return. Such models are inherently nonlinear,

and I propose a numerical algorithm for solving them. As an illustration, I solve

and estimate a model in which investors price inflation and consumption risk

in addition to wealth risk, with short-term rates are determined by a version

of a Taylor rule. The equilibrium duration of investors’ portfolio is treated as

an unobserved factor. This factor is largely responsible for the nominal term

premium and is correlated with the quantity of Treasury debt held by the public.

Shocks to the factor that are roughly equivalent to the Federal Reserve’s large-

scale asset purchases reduce the ten-year nominal term premium by about 70

basis points on impact and lead to moderate increases in consumption.
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1 Introduction

Over the last decade, economists have made considerable progress in reconciling the

behavior of the yield curve with standard consumption- and production-based asset

pricing.1 In these models, the term structure of interest rates is explained by investors’

attitudes toward inflation and consumption risk, and by the rule that monetary poli-

cymakers use to determine the short-term interest rate.

At the same time that these models have been developed, several central banks

have tried to shift the yield curve through purchases of long-term debt. Recent em-

pirical work has been nearly universal in concluding that those purchases and other

fluctuations in the structure of government liabilities have significant effects on the

term structure of interest rates and, most likely, on other asset prices.2 Perhaps the

most commonly cited explanation for these results is that a reduction in the quantity

of longer-term bonds that investors must hold leads them to require less compensation

for bearing the remaining interest-rate risk in their portfolios; consequently, expected

returns, term premiums, and yields on bonds fall. This phenomenon is sometimes

known as the “duration channel” of government debt.

This type of mechanism is completely absent from the structural, consumption-

based term-structure literature. In that literature, a shift in the quantity and distribu-

tion of government debt is either neutral or undefined. Indeed, partly on these grounds,

several authors argue that the empirical evidence on the effects of asset purchases may

reflect some other mechanism. A common refrain is that, in frictionless markets, asset

quantities should be irrelevant for asset prices, a critique exemplified by Eggertsson

and Woodford’s (2003) proof that, in a particular class of general-equilibrium models,

the structure of government debt available to the public makes no difference for either

asset prices or macroeconomic outcomes.

Meanwhile, advocates of the duration channel frequently point to models such as

Vayanos and Vila (2009) and Greenwood and Vayanos (2014) (collectively, “GVV”) for

theoretical support. In those models, shifts in the supply of long-term assets available to

investors change their equilibrium exposures to interest-rate risk, causing fluctuations

1Among others, see Wachter (2006), Piazzesi and Schneider (2007), Van Binsbergen et al. (2012),
and Rudebusch and Swanson (2012).

2See Bernanke et al. (2004), Kuttner (2006), Gagnon et al. (2010), Greenwood and Vayanos (2010,
2014), Krishnamurthy and Vissing-Jorgensen (2011, 2013), Meaning and Zhu (2011), Swanson (2011),
D’Amico et al., (2012), Hamilton and Wu (2012), Joyce et al. (2011), Li and Wei (2012), Cahill et
al. (2013), D’Amico and King (2013), Bauer and Rudebusch (2014), and Rogers et al. (2014), among
others.
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in term premia.3 Although these models clearly contain elements that are appealing

for those seeking to formalize and explore the link between bond supply and bond

pricing, a number of difficulties have prevented their use for policy analysis or their in-

corporation into broader asset-pricing and macroeconomic models. In the GVV model,

investors only hold Treasury bonds, inflation and consumption risk are not priced, and

policy actions by the government are not explicitly modeled. And, despite these sim-

plifications, the models are only analytically tractable in certain special cases. These

limitations make it difficult to assess the economic importance of their central mecha-

nism and to reconcile it with other macro-finance literature, including Eggertsson and

Woodford’s neutrality proposition.

This paper attempts to make some progress in incorporing the duration channel

into standard macro-finance approaches to the term structure. First, I point out that

the essential effect captured by the GVV model can be present in any no-arbitrage

model in which the stochastic discount factor depends on the return on wealth. In

such models, changes in the relative quantities of assets that are held by investors

affect the distribution of the wealth return and therefore affect all asset prices. Prefer-

ences that result in pricing kernels that depend on the return on wealth have long been

common in the finance literature, and, since Epstein-Zin-Weil utility has this property,

are increasingly used in macroeconomic models as well. (The Eggertsson-Woodford

model does not have it, which is why there are no such effects there.) The equilibrium

duration channel that is possible under this specification is descended from the “port-

folio balance” effects developed in papers such as Tobin (1968) and Frankel (1985),

but, unlike those papers, the models considered here are arbitrage free, obey rational

expectations, and do not require anything special about money or short-term debt.

Second, I provide a numerical method for solving such models in a wide variety of

cases, iterating on a version of Tauchen and Hussey (1991). The solution is a nontriv-

ial computational task because, even under simplifying assumptions about funcitonal

forms, equilibrium asset prices involve a nonlinear recursion in multidimensional func-

tion space. (This is why Vayanos-Vila can only be solved analytically in limiting cases.)

One advantage of the approach I propose is that it allows for arbitrary nonlinearities in

the state vector and in the pricing kernel. A key nonlinearity is introduced by allowing

investors to have relative, rather than absolute, risk aversion. Another is introduced

3These models have been extended and applied in various ways by Hamilton and Wu (2012),
Altavilla et al. (2015), Greenwood et al. (2015), King (2015), Haddad and Sraer (2015), Malkhozov
et al. (2016), and King (forthcoming), among others.
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by imposing an effective lower bound (ELB) on the nominal short rate.

Finally, I apply the approach to a model with two observable macro factors and

two latent factors. The short-term interest rate follows a version of the Taylor rule

with an ELB constraint that is implemented using a “shadow rate” specification.4

One of the latent factors in the model corresponds to low-frequency variation in the

Taylor rule; the other governs the maturity structure of investors’ assets. The nominal

pricing kernel depends on the return on wealth, inflation, and consumption growth,

with a functional form that nests Epstein-Zin. Because the SDF explicitly accounts

for inflation, the model allows for the pricing of real as well as nominal bonds.

I estimate the model on data on nominal Treasury yields and macroeconomic data

since 1971, as well as inflation-protected (TIPS) yields that become available in 2003,

using nonlinear Bayesian filtering methods. The model fits the yield data well—far

better than a comparable model that ignores the return on wealth. It generates a

decomposition of the yield curve that is broadly in line with other models, including a

downward drift since the early 1980s in expected inflation, the expected real short rate,

and the nominal term premium. Although the price of inflation risk and the volatility

of inflation are constant, the model exhibits a time-varying inflation risk premium

through the nonlinear interaction of inflation with wealth. This premium broadly

has the properties of other estimates of the inflation-risk premium in the literature,

declining from a value of around 1.5% during the 1970s to around 0.5% by the end of

the sample.

I estimate significant time variation in the effective duration of investors’ exposures.

In particular, the estimated duration factor rises sharply around 1980 and then fluc-

tuates roughly with the business cycle over the next three decades. Although the level

of this factor governs fluctuations in both real and nominal term premia, it does so in

a nonlinear way that depends on the levels of all of the other variables in the model

and, importantly, on the proximity of the ELB. In particular, term premia drift down

over the sample, even though duration displays no secular trend since the early 1980s.

In addition, the level of the duration factor is modestly correlated with measures of

Treasury supply and duration. The estimates suggest that a four-month increase in

duration (about a one-standard-deviation shock, on an annual basis, and about 1/5

of the combined effects of the Federal Reserve’s asset purchase programs) results in

4See Kim and Singleton (2012), Krippner (2012), and Wu and Xia (2013). Bauer Rudebusch (2014)
argue that shadow-rate models do a good job of capturing yield-curve dynamics near the ELB, greatly
outperforming traditional affine models.
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a contemporaneous increase of about 18 basis points in long-term nominal yields and

about 22 basis points in long-term real yields, although these effects are smaller near

the ELB. In addition, such shocks lead to modest decreases in consumption growth over

the subsequent five years. Finally, I find that conventional monetary-policy shocks (un-

expected increases in the short rate) cause significant increases in the duration factor

and thus lead to increases in term premia. This is consistent, for example, with the

presence of yield-oriented investors, as in Hanson and Stein (2015).

In addition to the studies mentioned above, this paper is related to several strands

of the recent literature that have examined the effects of asset supply—especially as

it relates to QE—through various lenses. One strand employs dynamic, stochastic

equilibrium (DSGE) models to study the effects of QE on the macroeconomy. The

stochastic discount factors that emerge in most DSGE models do not depend on the

return on wealth and so cannot capture duration effects. (Indeed, most implemen-

tations of DSGE models involve linearizations that remove term premia altogether.)

Nonetheless, some papers have introduced QE and other fluctuations in Treasury sup-

ply into DSGE models by introducing segmentation and limited participation between

the short- and long-term bond markets (e.g., Andres et al., 2004; Chung et al.). This

device is dificult to reconcile with institutional reality, and it does not capture the

risk-based concept that underlies the duration channel in the finance literature.5

A few other papers have used Treasury-market data to discipline the parameters in

versions of the GVV model, linking the exposures of investors in that model directly to

observable measures of Treasury supply (Greenwood et al., 2014; Kaminska and Zina,

forthcoming). Relatedly, though they do not impose the cross-equation restrictions

implied by the GVV structure, Li and Wei (2014) also use observable measures of

Treasury and MBS duration in an affine term-structure model. Proceeding in this

way implicitly assumes an extreme form of market segmentationthe arbitrageurs are

effectively assumed to hold all of the Treasury bonds outstanding and to face none of

the tax liabilities associated with paying off those bonds. Indeed, they are assumed to

have no other assets, liabilities, or cash flows at all. Instead, I treat asset exposures

as a latent factor, which can produce both positive and negative asset exposures at

different maturities, allowing the data to determine the relevant measures of wealth.

5Another strand of the macro literature focuses on the potential for QE to replace private in-
termediation by taking credit risk onto the central banks balance sheet (Gertler and Karadi, 2011;
Woodford, 2012). While this channel may well be relevant for some types of asset-purchase programs,
it is distinct from the duration channel. It also does not apply to most QE programs in the U.S.,
which involved only government-backed bonds.
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In addition, as noted, the previous term-structure models in this literature abstract

from macroeconomic factors and the nonlinearity associated with the ELB, elements

that I explicitly incorporate.

Section 2 of the paper sets up the basic class of models considered here and discusses

how they relate to those used in the previous literature. Section 3 describes the solu-

tion algorithm. Section 4 illustrates with some simple comparative-statics examples,

with one- and two-factor models and the duration of investor portfolios held constant.

Section 5 discusses the development and estimation of the four-factor macro-finance

model. Section 6 presents the results of that model. Section 7 concludes the paper.

2 Asset Portfolios and Returns under No Arbitrage

I consider investors who, at each time t, have claims to a series of certainty-equivalent

nominal payments over each of the following N periods. (I use the term ”exposure”

synonymously with ”claim.”) Each claim pays one dollar at maturity. I collect the

quantities of the claims at each maturity in the vector Xt = (X
(1)
t , ..., X

(N)
t ). Claims

at each maturity may take any value on the real line, with negative values denoting

short positions. Without loss of generality, I allow the quantity of each claim held by

investors to be determined by a vector of ”duration factors” mathbfzt.

The time-t (real) prices of the claims are denoted by pt = (p
(1)
t , ..., p

(N)
t ). It is

assumed that the prices and quantities of these claims are determined in equilibrium in

each period to clear all asset markets. In cases in which the optimization problem faced

by agents is specified, the demand and supply functions that give rise to this equilibrium

can be solved explicitly. Here, I simply assume that the equilibrium quantities Xt

follow a known reduced-form process, which may be a function of other variables in

the economy.

The absence of equilibrium arbitrage opportunities is equivalent to the existence

of a stochastic discount factor (SDF) Mt,t+n that prices all assets in the economy. In

particular, the real price of an arbitrary asset at time t is given by

pt = Et [Mt,t+nqt+n] (1)

where qt+n is the asset’s payoff n periods hence, and Et indicates the expectation

conditioned on information at time t. This condition must hold for all horizons n > 0.
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The following standard relationships follow immediately:

p
(n)
t = Et [Mt,t+n] (2)

Mt,t+n =
n∏
i=1

Mt,t+i (3)

Define the n-period zero-coupon real bond yields in the usual way, as

y
(n)
t = − 1

n
log p

(n)
t (4)

and define the real short rate rt ≡ y
(0)
t . Equations (2) and (4) imply

rt = − log Et [Mt,t+1] (5)

Given a real SDF, Mt,t+n, the nominal SDF is defined as

M$
t,t+n ≡ Πt+nMt+n (6)

where Πt+n is the gross rate of inflation between periods t and t + n. Nominal bond

prices and yields, denoted p
$(n)
t and y

$(n)
t , are given analogously to equations (2) and

(4). The nominal short-term interest rate is denoted it = y
$(0)
t .

I consider models in which the one-period stochastic discount factor takes the form

Mt,t+1 = M(ξt+1, ξt, Rt+1) (7)

where Rt+1 is the one-period gross return on investors’ wealth, M(.) is a known func-

tion, and the vector ξt summarizes the time-t state of the economy. I restrict attention

to cases in which investors do not care about the quantities of the particular securities

that they hold per se. This rules out, for example, models with convenience yields,

monetary services, or other special benefits that might attach to certain assets beyond

their pecuniary returns. Formally, I assume zt /∈ ξt. I collect the duration factors

and economic factors into the state vector st = (ξt zt). I assume that st follows a

first-order Markov process on the support S with transition density τ(st+1|st).
The return on wealth is defined as
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Rt+1 ≡
X′tqt+1

X′tpt
(8)

where the payoff vector qt+s = ( 1 p
(1)
t+1 ... p

(N−1)
t+1 ). It is through (7) and (8) that

asset quantities are related to asset prices. Fluctuations in the state of the economy that

change the value of Xt will change pt because expected returns—and therefore current

prices—must adjust to make investors willing to hold the outstanding net positions

at each point in time. For convenience, define xt = ( x
(1)
t ... x

(N)
t ) as the vector of

par value asset shares, i.e., x
(n)
t ≡ X

(n)
t /

N∑
m=1

X
(m)
t . Since the same vector Xt appears

in both the numerator and denominator of (8), the dollar values of assets outstanding

will not themselves be relevant for pricing in the class of models considered here, only

their relative quantities will be. In particular, note that Rt+1 = x′tqt+1/x
′
tpt.

Define the log real return on an n-maturity asset as

ρ
(n)
t+1 = log

q
(n−1)
t+1

p
(n)
t

(9)

If one were willing to assume that M(.) was exponentially affine and that st and Rt

were jointly Gaussian, then expected returns could be written as

Et

[
ρ
(n)
t+1

]
= rt + cov[λ′ξt+1, ρ

(n)
t+1] + λRcov[Rt+1, ρ

(n)
t+1] + J (n) (10)

where J (n) is a term reflecting Jensen’s inequality. However, while equation (10) is

linear in logRt, it is not linear in the quantities Xt. This means that it will generally

not be possible to provide closed-form solutions for expected returns (or prices) as

functions of portfolio quantities.

The GVV models mentioned in the introduction achieve an analytical solution by

instead assuming constant absolute risk aversion. In particular, the expected log return

on an n-maturity bond in those models (using the notation of this paper) is

Et

[
ρ
(n)
t+1

]
= rt + λRcovt

[
X′tqt+1, ρ

(n)
t+1

]
+ J

(n)
t (11)

In continuous time, this equation gives each asset’s expected excess return as propor-

tional to the covariance of that asset’s return with the dollar value change in wealth.

Under additional functional-form assumptions about the process driving zt, GVV are

able to obtain analytical solutions for bond prices using (11). However, it is clear that
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the CARA case in (11) can only be equivalent to the CRRA case in (10) if the market

value of wealth X′tpt is constant in all states of the world—a condition that will gen-

erally be violated if prices adjust to exogenous changes in exposures. Resolving this

difficulty necessarily introduces nonlinearity into the CRRA model.

As the only model to incorporate supply effects into an affine representation of

the term structure, GVV has been highly influential in the way that economists have

designed and interpreted recent empirical studies.6 However, the unusual assumption

of constant absolute risk aversion that is needed to solve it has uncomfortable asset-

pricing implications. For example, the model implies that term premia should generally

trend upward with wealth, which runs counter to historical evidence. Moreover, it is

not obvious how to incorporate additional features, such as inflation or the ELB, into

the model while retaining tractability. The method proposed here, by solving the

models numerically, overcomes these problems.

3 Solution Method

The central difficulty in solving models like the above—in which M(.) is a funciton

of Rt+1 and Rt+1 is determined endogenously—is that the solution for asset prices

involves the moments of future prices, and, under rational expectations, the future

prices themselves depend on the same fundamental process. While it is common in

asset-pricing models for today’s asset prices to depend on the distribution of tomorrow’s

asset prices, the particular difficulty here is that the SDF itself depends upon both of

these objects.

I propose to solve these models numerically for the time-t vector of asset prices

pt using an iterative, discrete-state projection method. This approach has the added

advantage that it places very few constraints on either the functional form of the

pricing kernel or the dynamics of the state vector. Consequently, it is straightforward

to consider models with potentially important nonlinearities, such as the ELB.

I first make explicit that prices and quantities depend on the state of the econ-

omy. Namely, let X(n)(zt) be the function that maps the duration factors into the

quantity of asset n, and let Π(ξt) be the function that maps the macroeconomic state

vector into gross inflation. It is assumed that the form of the SDF in equation (7),

the laws of motion for the states, and the dependence of quantities on the states

6See, for example, Hamilton and Wu (2011), and Li and Wei (2012).
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are known—that is, we (and investors) have knowledge of the functions τ(st+1|st),
M(ξt, ξt+1, Rt,t+1), M

$(ξt, ξt+1, Rt+1), and X(n)(zt). We seek vector-valued functions

p(st) = ( p1(st) ... pN(st) ) and p$(st) = ( p$(1)(st) ... p$(N)(st) ) that describe

how all asset prices depend on st and Xt.

With this notation, the nominal price of asset n is given by

p$(n)(st) =

∫
S

τ(s′|st)M$(ξt, ξ
′, Rt+1)q

$(n)(s′)ds′ (12)

where the integral is taken over all dimensions of the state and q$(st) = ( 1 p$(1)(st) ... p$(N−1) )

is the vector of functions determining nominal asset payoffs in state st. An analagous

relationship holds for real prices p(st) with respect to the real SDF M(ξt, ξt+1, Rt+1)

and real payoffs q(st).

Given a distribution for the market return, Rt+1, (12) is a system of linear Fred-

holm equations of the first kind, which in principle can be discretized and solved by

quadrature in one step (see Tauchen and Hussey, 1991). However, the fact that Rt+1 is

defined as in (8) requires us to iterate by, first, solving (12) using a given distribution of

Rt+1, and, second, given the resulting pricing fuctions finding the updated distribution

of Rt+1. These steps can be repeated to convergence.

Specifically, let p$,k
d (st) be a proposal for the nominal pricing function on a dis-

cretization of the state space D = (d1, . . . ,dG) ∈ SG, where G is the number of nodes

and k = 0, . . . , K indexes iterations, and let q$,k
d be the corresponding discretization

of q$,k(st). Suppose that the nodes are uniformly distributed over the state space, so

that the conditional transition probability from node j to node h can be approximated

by7

τ̂(dh|dj) ≡ τ(dh|dj)

[
G∑
g=1

τ(dg|dj)

]−1
(13)

The solution algorithm proceeds as follows.

Set the iterator k = 0.

1. Guess a function p$,k(.) such that p$
t = p$,k(st) on a discretization of S. Find

the corresponding values of pkd (dt) at each node in D.

2. Based on this function, compute the real return on wealth between each pair of

7The uniform discretization is only for expositional ease and is not essential. Indeed, standard
quadrature methods are likely to be more efficient.
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nodes (j, g) as

Rk(dj, dg) =
x (dj)

′ q$,k
d (dg)

x (dj)
′ p$,k

d (dj)
− Π (dg) (14)

3. Compute the updated nominal pricing function for the vector p$,k+1
d (dj) at each

node j = 1, ..., G by setting

p
$(0),k+1
dj

(dj) = exp [i(−dj)] (15)

and

p
$(n),k+1
d (dj) =

G∑
g=1

τ̂(dg|dj)M$ (dj,dg, R(dj, dg)) p
$(n−1),k+1
d (dg) (16)

for n = 1, ..., N . Set q$,k+1
d (dg) = ( 1 p

$(1),k+1
d (dg) ... p

$(N−1),k+1
d (dg) ).

4. Set k = k + 1 and return to step 2.

This procedure constitutes a contraction mapping on D so long as the moments

of the pricing kernel are well behaved. The Banach Theorem then guarantees for

any given discretization D, p$,k
d (dj) −→ p$

d (dj) ∀ dj ∈ D, where p$
d is the (unique)

nominal pricing function that obtains if τ̂ is the data-generating process. But continuity

of τ ensures that, for any node j,

lim
G−→∞

p
$(n)
d (dj) = Et

[
p$(n−1) (st+1)M

$

(
dj, ξt+1,

x (dj)
′ q$,k

d (st+1)

x (dj)
′ p$,k

d (dj)
− Πt+1

)]
(17)

i.e., in the limit, the pricing function solves the no-arbitrage condition (2). Since Πt is

a known function of the state, this argument also guarantees that the algorithm finds

the unique real SDF.

Finally, by construction, if the algorithm converges, any point of convergence is

a rational-expectations equilibrium. This follows immediately, since convergence is

defined as the fixed point at which the joint distribution of p$
t+1 and M$

t+1 is consistent

with the vector p$
t , for each point in the state space.

It is important to note that, although the algorithm only solves for the vector of

prices at G points in the state space, once these solutions are in hand it is straightfor-

ward to calculate equilibrium prices at any point through the Nystrom extension. In
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particular, take an arbitrary state value st. For G large enough, we have

p$(n) (st) ≈

[
G∑
g=1

τ(dg|st)M$

(
ξt,dg,

x (st)
′ q$,k

d (dg)

x (st)
′ p$,k

d (st)
− Π (dg)

)
p$n−1(dg)

][
G∑
g=1

τ(dg|st)

]−1
(18)

and similarly for real prices. Once the algorithm has converged, the quantities on the

right-hand side are all known. Thus, real and nominal claims can be priced in at any

point in S.

Figure 1 displays some results on the convergence of the solution algorithm for the

one-factor model discussed in the next section. The only state variable in that model

is the “shadow” short rate i∗t . The top panel shows the computed 2-, 5-, 10-, and

15-year yields, shown for i∗t at its average value of 5.2%, across the first 30 iterations

(k = 1, . . . 30). The algorithm is initialized at a price vector p0
d (dj) = (0.95, . . . , 0.95)

for all values of dj and uses G = 8 nodes distributed uniformly across the range

i∗ = (−0.05, 0.15). It is evident from this figure that, for each maturity n, the solution

converges very quickly once k > n.

The middle panel shows convergence in the number of gridpoints by displaying the

computed yield curve (after k = 30 iterations), again using i∗t = 0.052 for illustration.

Yield curves are shown for G = 2, 4, 8, and 16, in each case spaced equally across

possible values of the state variable. While 4 nodes is clearly too few to achieve

convergence, the solutions using 8 or more nodes are indistinguishable from each other.

For brevity, these results were shown for the average value of the shadow short

rate. Similar convergence results obtain for other points in the state space, although

solutions will not be accurate near the bounds if the underlying state process itself

is not actually bounded. For example, in the above case, we would not expect the

procedure to generate correct solutions near it = 0.15. However, so long as the bound

on the state space is imposed far enough away from the values of the states that are

actually realized in practice, this limitation has a negligible effect on the results. The

bottom panel of the figure illustrates this claim by comparing the yield curve computed

above with the yield curve computed when the grid for i∗t is extended over ranges of

30 and 40 percentage points, rather than the 20-point range used above.
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4 Some simple examples

To illustrate some of the properties of these models, I briefly consider a series of one-

and two factor models in which the asset distribution is fixed. In the one-factor model,

the nominal short rate it is the only source of stochastic variation; the two-factor model

adds inflation. I take periods to be one year in length and suppose that assets have

maturities of up to N = 15 periods.

I impose that the nominal short rate is bounded below by adopting a “shadow-

rate” process. (See Kim and Singleton, 2012, and Wu and Xia, 2016, among others.)

In particular, suppose that the shadow short rate i∗t follows the linear process

i∗t = φ0 + φ1i
∗
t−1 + εt (19)

where εt has variance σ2. The short rate it is given by

it = max[i∗t , b] (20)

where the parameter b defines the ELB. I assume zero inflation, so it = rt at all t.

For the moment, assume that inflation is always zero. Then let the nominal SDF

be given by

M$
t,t+1 = δtexp

[
λR(Rt+1 − 1)

]
(21)

where λR is a risk-aversion parameter. The variable δt fluctuates to ensure that the no-

arbitrage condition is met for any exogenous variation in the short rate. In particular,

δt is immediately determined as

δt =
exp[−it]

Et [exp [λR(Rt+1 − 1)]]
(22)

From an economic point of view, fluctuations in δt can be interpreted as changes in

time or liquidity preference.

For the purposes of illustration, I set φ0 = 0.0052, φ1 = 0.9, σ = 0.01, b = 0.002,

and λR = −8. These values are calibrated roughly to match the dynamics of the

short-rate and the average value of the 10-year yield in the data.
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4.1 Effects of the asset distribution

I begin by considering the case in which the maturity structure of assets has a normal

distribution that is constant over time. That is

x(n) ∝ exp

[
−(n− n∗)2

2θ2

]
(23)

where the parameter n∗ is the average maturity outstanding, and θ is a scale parameter.

Panel A of Figure 2 illustrates the insensitivity of the results to the shape of the asset-

maturity distribution, as governed by θ. The left-hand graph shows the distribution

with n∗ = 8 and θ = 0.1 (blue) or θ = 2 (orange). The right-hand graph shows the

corresponding yield curves, in both cases taking the short rate to be it = 5.2%. The

curves are nearly identical. This should not be surprising because the individual asset

share x
(n)
t does not matter for the individual asset price p

(n)
t . Only the weighted sums

of asset shares shown in equation (8) matters, and they affect all prices in the same

way through M(.). Consequently, this model cannot produce local-supply effects from

large quantity gluts or shortages in particular sectors of the market.8

Panel B shows how a shift in the average duration in investors’ portfolio translates

into yields. Again taking the short rate to be 5.2%, I consider duration values of

n∗ = 5 years (blue) and z = 10 years (orange). In both cases, θ is set to 1, so that,

as illustrated on the left, this is just a uniform transposition of the distribution of

assets to higher maturities. As shown on the right, the yield curve shifts upward in

response—by 72 basis points at the ten-year maturity. Because the expected path of

short rates is the same in both cases, the entire difference is attributable to a change

in the (real) term premium.

Using the normal distribution in (23) for the asset supply imposes that exposures

are always positive at all maturities. In general, one may want to allow for negative

exposures (i.e., short positions). A convenient functional form that permits this was

proposed by Greenwood et al. (2015):

x(n) = 1 + (1− 2n

N
)z (24)

where z is a parameter that determines the average maturity of investors’ holdings

and N is the maximum maturity available. This specification—in which higher values

8Malkhozov et al. (2016) make a similar point.
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of z tilt the distribution of claims toward lower maturities—is arguably more realistic

than the normal distribution and also allows for negative exposures at some maturi-

ties. (The four-factor model of the following section adapts this specification allow

the maturity distribution to change over time by letting z follow a stochastic pro-

cess.) One advantage is that the average maturity is linear in z, making interpretation

straightforward.

Figure 3 shows how the ten-year yield varies with different values of z in this model,

when the short rate is at its average value. The dashed line shows the expectations

component of the yield, which does not depend on z. The difference between the

dashed and solid lines is the ten-year term premium. As above, the term premium

is monotonically increasing in duration (increasing in the value of z). The effects

of duration are non-linear, increasing as the amount of duration held by investors

increases. For low values of duration, representing negative exposure to long-term

assets, the term premium becomes negative.

4.2 Effects of the ELB

Since risk prices are themselves a function of the quantity of risk held by investors,

heteroskedasticity can cause risk prices—and therefore term premiums—to differ sig-

nificantly across states of the world. A particularly important case of this is the

lower bound on the nominal short rate. The presence of this bound, all else equal,

implies that there is less uncertainty about short-term interest rates in the near future

when the current value of those rates is near zero. The reduction in the volatility of

short-term interest rates induced by the ELB will dampen duration effects.

Figure 4 illustrates this effect by conducting the same comparative-statics exercise

on duration that was depicted in Figure 2.B, but this time with a shadow-rate value

of i∗t = −3%. (This is close to the average value of the shadow rate in the empirical

estimates of Krippner (2012).) Yield curves in this region of the space have an “S”

shape, due to the expectation for the short rate to remain at zero for some time. Again,

the shift from a portfolio duration of 5 years to 10 years causes an increase in longer-

term yields, but it is smaller than we obtained away from the ELB. In particular, in

this case, the increase in the 10-year yield is only 61 basis points. King (forthcoming)

explores the effect of the ELB in similar models in detail.
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4.3 Effects of the price of wealth risk

Figure 5 shows the effect of different values of the price of wealth risk, λR, for it = 5.2%,

z = 8 years, and θ = 1. A reduction in this parameter, from -8 to -4 in this case, acts

much like a reduction in duration, causing the yield curve to fall at longer maturities.

Again, this entire decline—77 basis points on the ten-year yield—is due to term premia.

4.4 Effects of inflation

To this point, the model has contained only one factor, the nominal short rate. This

specification makes no distinction between real and nominal yields or, equivalently,

assumes that inflation is always zero. Given its historical importance as a risk factor

in bond pricing and monetary policy, this is a significant omission. To incorporate

inflation, I make two adjustments to the above model. First, consistent with equation

(6), I distinguish between the real and nominal SDFs as

Mt,t+1 = δtexp
[
λR(Rt+1 − 1− πt)

]
(25)

M$
t,t+1 = δtexp

[
πt + λR(Rt+1 − 1− πt)

]
(26)

Second, I modify the short-rate process to depend on inflation, similarly to a simple

interest-rate rule for monetary policy:

i∗t = κππt + st (27)

where

st = φs0 + φs1st−1 + εst (28)

The random variable st is a factor that drives exogenous variation in the short rate. I

calibrate κπ = 1.5, φs0 = 0.0052, and φs1 = 0.9.

There is now a second factor in the model: inflation. I assume that it’s dynamics

are

πt = φπ0 + φπ1πt−1 + επt (29)

and I calibrate φπ0 = 0, φπ1 = 0.9, and the standard deviation of επt = 1.6%. Note that,

for ease of exposition, the unconditional mean of inflation is set to zero.

Panel A of Figure 6 shows how nominal risk premia in this model can be decomposed

into compensation for inflation risk and compensation for real risk. It plots the real and
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nominal yield curves, relative to the expectations component, evaluated at the sample

means of the two state variables. Since expected inflation is zero, the difference between

the nominal and real yield curves is the inflation-risk premium, and the difference

between the real yield curve and the expectations component is the real term premium.

Nominal yields are uniformly higher in this model, compared to the one-factor model

above—even though the risk aversion parameter is the same—because there is now an

additional source of risk that commands a positive premium.

Panel B shows how the real and inflation-risk components of the 10-year term

premium vary with the duration of investors’ exposures. Both premia are increasing

in duration, though they behave somewhat differently. The differences reflect how

the covariance of wealth with inflation and (real) short-rate risk changes as investors’

holding of assets at different maturities changes.

5 A Macro-Finance Model with Portfolio Effects

5.1 Model setup

I now turn to a fully specified four-factor macro-finance model in which the duration

channel is operative, and I take that model to the data. As noted earlier, some papers

have proxied investors’ duration exposures using observable measures of government

bond supply. Recognizing that, in reality, investors have duration exposures through

many types of payment claims and obligations, of which the Treasury universe is likely

only a small part, I instead treat the duration as an unobserved factor. This factor

is identified only from fluctuations in bond yields themselves, together with the cross-

equation restrictions implied by the model.

In reduced form, the model is similar to Ang and Piazzesi (2003) and other term-

structure models that incorporate observable macroeconomic factors. However, the

model here features strong cross-equation restrictions that potentially limit its ability

to fit the data, relative to an unrestricted four-factor model. First, one of the latent

factors is restricted to only affect the level of the short-term interest rate. Second, the

other latent factor, z, only enters the SDF as a combination of asset returns, as in

equation (7). Third, the estimation takes into account the fit of the macroeconomic

data in addition to the fit of the yield curve. Thus, the factor dynamics are not

completely free to fit yields alone.

Specifically, I consider a four-dimensional state vector, st = (πt, gt, st, zt), where πt
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is inflation, gt is the growth rate of real consumption, st is a factor affecting the level

of the nominal short-term risk-free rate, and zt is a factor governing investor exposures

at different maturities. I assume that the state follows a VAR(1) process:

st = φ+ Φst−1 + et (30)

where the reduced-form error vector et has covariance matrix Σ. The short-term

nominal rate is given by equation (20), where I calibrate the value of b to 20 basis points

and where the shadow rate i∗t is now specified as a function of the macroeconomic data:

i∗t = κππt + κggt + st (31)

Thus, the factor st has an interpretation as a deviation from a Taylor-type rule, or

as low-frequency variation in such a rule (such as changes in the inflation target or

natural rate of interest).

The unobserved factor zt determines equilibrium asset quantities as in equation

(24), taking N = 10:

x
(n)
t =

1

10
+ (1− 2n

10
)zt (32)

As noted in the previous section, this formulation follows Greenwood et al. (2015),

except that it applies to the future values of claims, rather than to the market value,

and that it is normalized to sum to 1, such that the value of x
(n)
t at each maturity

can be interpreted as a share of total claims. Again, as discussed above, the precise

specification of the supply factor loadings generally has only second-order effects. The

magnitude of the zt is linear in the weighted-average maturity (WAM) of investors’

cash flows.9

I suppose that investor preferences are such that the nominal SDF is

M$
t,t+1 = δtexp [πt+1 + λggt + λR(Rt+1 − 1− πt)] (33)

where, as above, Rt+1 is the gross return on wealth, given by equation (8). As in

the previous section, the random variable δt can be calculated exactly, given the other

time-t model objects, as

δt = exp [−it] Et [exp [πt+1 + λggt + λR(Rt+1 − 1− πt)]]−1 (34)

9In particular, it is straightforward to show that WAMt = N
2 + 1

6 (2 + 3N + N2))zt.
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I note that, unlike most modern term-structure models, the model here has both

constant coefficients in the SDF and homoscedastic factors. In standard affine models,

these two restrictions would result in term premia that are constant. Instead, here,

term premia fluctuate with the state of the economy for two reasons. First, the nonlin-

earities in the model endogenously affect the way that factor volatility passes through

to asset-price and SDF volatility. For example, as illustrated above, near the ELB,

volatilities are damped, putting downward pressure on term premia. Second, more

importantly, changes in the factor zt shift the composition of wealth between assets

of different volatility. As a consequence, the SDF is heteroskedastic, even though the

underlying factors are not. Again, this is the same mechanism that drives term premia

in GVV. A productive extension of the model would be to allow for coefficients and

factor volatilities to also be state-dependent, but the results presented below suggest

that a good deal of yield-curve variation can be explained without the need for these

extensions.

5.2 Estimation

I estimate the model on annual data from 1971 through 2017. There are two reasons for

using annual data. First, from a practical standpoint, having both fewer observations

and fewer points on the yield curve greatly increases computational efficiency. Second,

it is important to capture lower-frequency properties of the macro data to fit bond

yields. (See, e.g., Piazzesi and Schneider, 2007.) Using annual data allows for this,

while still maintaining a relatively parsimonious first-order dynamic process.

I fit the model to PCE inflation rates, growth of nondurables and services from the

NIPA data, and 1-, 5-, and 10-year nominal Treasury yields, and 5- and 10-year TIPS

yields. All yields are Gurkaynak et al. (2007) zero-coupon yields and are averaged to

produce annual values. Let the 5× 1 vector yt collect the yield data, and denote by Ω

the 5× 5 covariance matrix of the error terms on the long-term yields produced by the

model. For ease of notation, I collect all of the other model parameters in the vector

Θ = (φ Φ Σ κg κπ λg λR).

Because Treasury yields depend on the duration factor and the shadow rate in a

nonlinear way without a closed-form solution, I estimate the series {zt} by means of a

particle filter (see Doucet et al., 2001). Specifically, for a given set of parameters Θj

and Ωj, estimation proceeds as follows.
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1. Calculate the real and nominal SDFMj andM$
j based on Θj, using the procedure

described in Section 3.

2. Using Θj for the state dynamics, run the particle filter. Set t = 1971 (corre-

sponding to the first annual observation). Then,

(a) Draw values of zt,k ∼ p (zt|Θj, st−1), for k = 1 to 100, 000.

(b) For each draw zt,k, use the state dynamics to construct model implied yields

as conditional expectations of the SDF, given the time-t state.

(c) Evaluate the weights wk,t ∝ Pr(yt|zt, πt, gt, it,Θj,Ωj) based on the yield

data. For the early part of the sample, where TIPS yields do not exist, the

weights are only proportional to the PDF of the nominal yield errors.

(d) Resample 10,000 draws from the distribution of {zt}t1971, using the weights

wk,t.

(e) t = t+ 1.

Note that, in running the particle filter, I keep the whole history of each re-

sampled particle. The resulting distribution of paths is a random sample from

the posterior distribution p ({zt}20171971|Θj,Ωj, {πt, gt, it,yt}20171971). That is, it is a

smoothed, rather than a filtered, estimate.

The fixed parameters of the system are estimated by maximum likelihood, with

standard errors computed via the delta method.

6 Results

6.1 Yield curve fit and decomposition

Table 1 reports the parameter estimates. The short-rate coefficients κg and κπ are

roughly in line with other estimates of simple interest-rate rules. The coefficients λg

and λR, reflecting the market prices of consumption risk and wealth risk, respectively,

are 0.9 and -4.2. However, they are estimated with substantial uncertainty.

Figure 7 shows the yields used in the estimation (in red), together with the posterior

medians and 10% - 90% credibility intervals of the model-implied yields. (The 15-year

nominal yield was not used in the estimation but is shown for comparison.) As shown
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in Table 1, the estimated standard deviations of the error terms, evaluated at the

posterior median, range from 25 to 31 basis points.

Figure 8 shows the model-implied decomposition of the 10-year yield into its four

components: the expected real short rate, the expected inflation rate, the real term

premium, and the inflation-risk premium. The real term premium and the inflation

risk premium sum to the nominal term premium by definition. The average expected

nominal rate and average expected inflation over the next ten years are computed, for

each period’s state vector, based on the state dynamics. The average expected real rate

is the difference between these series. The corresponding real and nominal term premia

are simply the differences between the model-implied (real or nominal) 10-year yield

and its expectation component. The series shown are the means of the model-implied

distributions of each series.

The model has several features that are common to less-restricted term-structure

models (i.e., those with multiple latent factors and no economic interpretation of the

SDF), such as Kim and Wright (2007), Adrian et al. (2017), and D’Amico et al. (2017).

In particular, it implies a fairly rapid increase in the nominal term premium in the late

1970s and early 1980s, followed by a gradual downward drift. The real term premium

ranges from about 0.5% to about 2%, and the inflation risk premium ranges from about

0.5% to about 1.5%. They are highly correlated, and both contribute to the decline

in the overall term premium since 1980. Expected inflation also moved lower in the

1980s, largely following realized inflation. The ten-year expected real short rate has

drifted lower by about 200 basis points between about 2000 and 2017, consistent with

some other estimates of “r-star.”

It is interesting to note that the model exhibits significant time variation in the

inflation-risk premium, because (apart from the effects of the ELB) the variance of

inflation is constant, and it enters into the SDF with a constant exponent of 1. Thus,

the time variation arises solely from the covariance of inflation with the return on

wealth, which is a function of the duration factor zt.

6.2 The latent factors

Figure 9 shows the estimates of the two latent factors in the model. Panel A presents

the short-rate factor. It moves somewhat lower since the early 1980s, consistent with

downward drift in both the inflation target and the neutral rate of interest. Of course,

this variable is pinned down fairly precisely by short-term yields. However, it be-
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comes less precisely estimated during the ELB period, when those yields are no longer

informative about its value.

Panel B shows the estimated path of the duration factor over time (median and

80% credibility interval). For ease of interpretation, the factor value is converted to

the WAM of claims in investors’ portfolio. It starts the sample period low but rises

sharply in the early 1980s. It displays little systematic trend over the remainder of the

sample, although it spikes around the trough of every recession. Although the level of

the estimated zt is correlated with the other model objects shown in Figure 8, it does

not bear a one-to-one correspondence with any of them due to the nonlinearities of the

model.

The factor has an interpretation as the average maturity of claims to future pay-

ments held by investors. While these claims may take a number of forms—including

privately issued securities, real assets, and future income streams—a case of particular

interest is that of Treasury debt. To see whether the size and structure of actual Trea-

sury debt bears any relation to the duration factor, I regress the series in Figure 9 on

the WAM of all Treasury debt outstanding (WAM) and on the maturty-weighted debt-

to-GDP ratio (MWD). Both measures are calculated using all outstanding Treasury

securities available in CRSP, and I control for 1-year yields in the regressions.

Table 2 reports the results. Both measures are strongly positively correlated with

the estimated factor. (In fact, coincidentally, they take almost identical coefficient

values.) Of the two, WAM is more consistent with the interpretation given to the

factor in the model, since it is in the same units. According to the regression, a one-

year increase in Treasury WAM is associated with a 1.36-year increase in model WAM.

We cannot reject that the coefficient is equal to 1.

Figure 10 shows the estimated relationship between the duration factor and the

level of the 10-year yield. In the top, black line, the other three state variables are all

set to their sample means, giving a short rate of 5%. In the bottom, blue line, inflation

and growth are set to their sample means, but the shadow rate i∗t is set to -10%, so that

the ELB is binding. In both cases, there is a positive association between duration and

yields. As in the one-factor model of the previous section, this association is attenuated

at the ELB.

Figure 11 shows that a significant portion of the level of and variation in the ten-year

yield is driven by zt. Specifically, I set λR = 0, so that the return on wealth is no longer

an element of the SDF, holding all other parameters and state variables the same. The
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resulting counterfactual 10-year yield is shown by the blue line, while the black line

is the yield implied by the baseline model. The shaded region, which averages about

1.5 percentage points, represents the contribution of the return on wealth to long-term

rates. Looked at in this way, the duration channel accounts for the bulk of the nominal

term premium (which averages 1.9%). This result is also shown in the second column

of Table 3, which reports the model errors in the counterfactual model. (Column 1

reports the errors in the baseline model, for comparison.)

A related question is whether a model that includes only consumption and infla-

tion in the SDF can do equally well in fitting the data. To answer this question, I

re-estimated the model without including Rt in M(.). Note that, even in this case,

the unobserved factor zt may continue to help, to the extent that it might absorb

predictable variation in nominal yields that is not accounted for by the observable

variables, although it would no longer have an interpretation as reflecting portfolio du-

ration. The last column of Table 3 reports the model fit in this case. Re-optimizing the

parameters of the model improves the fit substantially relative to the second column,

mostly because the model is able to raise the level of yields relative to that column

and eliminate the downward bias that was present in Figure 7. However, the errors

in matching yields are still about twice as large as in the baseline model (even though

the number of observable and unobservable factors is the same). Evidently, adding

the return on wealth to the SDF and treating zt as reflecting portfolio duration is

advantageous for fitting the yield-curve data.

6.3 Impulse-response functions

I now consider the dynamic effects of shocks to the short rate and the duration factor.

For this purpose, I adopt a structural decomposition of Σ using short-run ordering

restrictions. Given the use of annual data, it is not realistic to impose the usual

assumption that certain variables cannot respond to others for a least one period.

Therefore, I estimate the shocks using higher-frequency data, as follows. First, using

the Φ parameters and the estimated annual values of zt, I interpolate the zt series

to a quarterly frequency. Then, I re-run the model using quarterly data for all four

variables, including three lags of the states. I apply the Cholesky decomposition to

the covariance matrix of the error terms of this higher-frequency model to obtain the

short-run ordering. I order the duration factor last and the short rate second-to-last.

The responses of the real and nominal yield curves to the two shocks is shown in
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Figure 12, using the maximum-likelihood parameter values. Monetary-policy shocks

decay nearly monotonically, and the expectation of this behavior is reflected in the

initial response of the yield curve, which is greatest at the short end. (This shape

is somewhat different at the ELB, not shown.). These shocks have modest effects on

inflation, so most of this behavior is passed through to real yields.

The duration shock results in a much different shape of the initial response. In

response to a one-standard-deviation shock (about 4 months of duration, at an annual

frequency) short-term yields do not move at all, while nominal yields beyond about 7

years rise by about 18 basis points. The real yield curve rises even a bit more than the

nominal curve, although that response exhibits a slight hump shape across maturities,

with the peak around the 5-year sector. The effect of duration shocks on both real and

nominal yields is hump-shaped over time, and decays very slowly after the first few

years.

Taking a closer look at these responses, Figure 13 shows the response of the ex-

pectations and term-premium components of nominal yields across maturities, in the

period when the shocks occur. Most of the effect of the monetary-policy shock is on

the expectations component, but there is a sizeable effect on term premia as well. I

will return to this result momentarily. The duration shock has a small effect on short

rate expectations that arises through the dynamic response of the economy to changes

in zt and the associated response of the interest-rate rule. Perhaps surprisingly, the

effect of the duration shock on the term premium is fairly modest.

The shocks also have implications for the dynamic paths of the economic variables.

These are shown in Figure 14. Both shocks have no significant effect on inflation but

a modestly negative effect on consumption. Interestingly, the duration factor rises

following a shock to the nominal short rate. This reaction is responsible for the modest

increase in term premia associated with this shock, noted in the previous figure. It

is consistent with investors moving into longer-term assets in response to increases in

interest rate, a behavior that Hanson and Stein (2015).

Using these results, we can do a back-of-the-envelope calculation to consider the

effects of the Federal Reserve’s asset purchase programa. In King (forthcoming) I

calculate that the Fed’s asset purchases collectively reduced the dollar duration in

public hands by about 20%, relative to what it would have otherwise been at the end

of the program. MWD at the end of 2014 was 5.0. Thus, QE may have been responsible

for a reduction of about 1.25 in this variable. From the second column of Table 2, this
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would map into a value of zt that is about 1.7 years lower. The IRFs above suggest that

this would translate into about a 80 basis point decrease in long-term nominal yields

and about a 95 basis point decrease in long-term real yields, with about two-thirds of

this effect arising through term premia. In addition, such a shock would have raised

consumption growth by about 0.8% over each of the following three to four years and

perhaps have resulted in a some boost to inflation (though the latter response is not

statistically significant.)

There are several caveats to this calculation. First, QE programs were implemented

at the ELB, and the attenuating effects of that environment have already been noted.

Second, the programs were spread over several years, rather than occurring as a single

large shock. That timing difference could matter in the presence of nonlinearities.

Third, the dynamics of central bank asset purchases are likely to differ from those of

Treasury debt or other elements of investors’ equilibrium portfolios. Since investors

perceptions of these dynamics matters for their response, the effect of QE on yields

and economic variables might be different from the effects of other types of shocks to

zt.

7 Conclusion

This paper has presented a method for solving a broad class of models in which the ma-

turity distribution of investors’ assets matters for bond yields (and other asset prices)

through the dependence of the pricing kernel on the return on wealth. These models

are inherently nonlinear and analytically intractable, and I develop an algorithm for

solving them. I set up and estimate one such model, which includes both inflation

and real activity as observable factors. To my knowledge, this is the first attempt to

integrate portfolio-balance / duration effects of the type explored in Vayanos-Vila into

a structural macro-finance asset pricing model. The model allows one to examine such

issues as the relative effects of short-rate and bond-supply shocks, which might be of

interest for calibrating monetary policy.

Generally, the model suggests that the direct effects of duration shocks on term

premia are fairly small. However, the presence of duration in the model, through the

return-on-wealth term in the stochastic discount factor, is very important for explaining

the behavior of yields. Put somewhat differently, fluctuations in duration are less

important for the term structure than fluctuations in real asset prices, which then
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feed back through their affect on aggregate portfolio returns. Adding these features to

more-realistic and fully specified models of the macroeconomy is an important direction

for future research.
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Table 1.  Parameter Estimates 
 
k G kR l G l R w(1nom) w(5nom) w(10nom) w(5tips) w(10tips) 

1.02 
(0.29) 

1.16 
(0.15) 

0.9 
(94.3) 

-4.2 
(6.4) 0.25% 0.27% 0.27% 0.30% 0.31% 

 
Note: Standard errors in parentheses. 
 
 
 
 
 
 
Table 2.  Regressions of Duration Factor on U.S. Debt Metrics 
 

Dep. var: Estimated duration factor 

Intercept -5.37** 
(2.10) 

-2.34 
(1.40) 

1y yield 30.2*** 
(10.9) 

46.2*** 
(12.1) 

WAM 1.36*** 
(0.35) 

 

 

MWD/GDP  1.36*** 
(0.35) 

Adj. R2 0.679 0.681 

 
Note: Standard errors in parentheses. 
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Table 3.  Fit Statistics 
 
 Baseline Baseline 

parameters, 
but lR =0 

Re-estimated 
w/o Rt+1  in 
SDF 

Inflation t+1 1.30% 1.30% 1.38% 
Consumption t+1 1.12% 1.12% 1.20% 
1y yield t+1 1.30% 1.42% 1.44% 
5y nom. yield t 0.35% 2.33% 0.62% 
10y nom. yield t 0.35% 1.93% 0.69% 
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Figure 1.  Convergence of the Algorithm in the One-Factor Model 
 
A.  Convergence over iterations 

 
 
B.  Convergence over number of nodes 

 
 
C.  Convergence over range of nodes 
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Figure 2.  Duration Effects in the One-Factor Model, with Normally Distributed 
Exposures 
 

 
A.  Effect of the distribution shape 
 

   
 
 

B.  Effect of duration 
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Figure 3.  Duration Effects in the One-Factor Model, with Linearly Distributed 
Exposures 
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Figure 4.  Effect of the ELB in the One-Factor Model 
it* = -3% 

  
 

 
 
 
 
 
 
 
 
Figure 5.  Effect of the Risk Price in the One-Factor Model 
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Figure 6.  Effect of Inflation in the Two-Factor Model 
 
A.  Yield-curve decomposition at unconditional means 

 
 
 
 
B.  Duration effects on 10-year risk premia  
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Figure 7.  Four-factor model-implied yields vs. data 
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Figure 8.  Decomposition of 10-year Nominal Yield 
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Figure 9.  Latent variable estimates 
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Figure 10.  10-year yield as a function of the duration factor 
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Figure 11.  Contribution of duration effect to 10-year yield 
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Figure 12.  Impulse-response functions – Yield curve 
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Figure 13.  Immediate impact of shocks on yield curve components 
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Figure 10.  Impulse-response functions – state variables 
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