Real Yields and the Transmission of Central Bank Balance-Sheet Policies

Tom King

Federal Reserve Bank of Chicago¹

2 July 2022

¹The views expressed here are not official positions of the Chicago Fed or the Federal Reserve System.

Tom King (Chicago Fed)

Real yields

2 July 2022

1/21

Introduction

Nominal yields have trended downward for 50 years:

Source: Federal Reserve Economic Data, Federal Reserve Bank of St. Louis

- Arbitrage implies nominal yields cannot fall below the same ELB that applies to the short rate.
- Does this mean that unconventional monetary policy is doomed?

Tom King (Chicago Fed)

Real yields

Introduction

Not necessarily, if QE works through *real* yields.

- Intuitively, real yields should be the operative macroeconomic variables.
 - Gertler & Karadi (2015)
 - Gilcrhist et al. (2015)
- And there is evidence that the real term premium has been the component most affected by QE:
 - Krishnamurthy & Vissing-Jorgensen (2012)
 - Abrahams et al. (2016)
- Real yields are not bounded by an aribitrage argument can be arbitrarily negative.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

This paper

Questions for this paper:

- Can balance-sheet policy still affect real yields—and the macroeconomy—when nominal yields are constrained?
- If so, what type of balance-sheet policy works best?

Framework:

- Macro-finance model of "duration effects" in the yield curve.
- Similar to Greenwood-Vayanos (2014) and Vayanos-Vila (2021).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This paper

I extend the GVV model in several ways:

- Add inflation and real/nominal bond distinction
- Add an ELB on the nominal short rate
 - As in King (2019)
- Let shadow rate follow a Taylor Rule
- Allow for feedback from real yields to inflation and output

Will allow us to consider the term-structure and macro consequences of various types of balance-sheet policies.

э

Warm-up model

- Nominal short rate i_t is bounded by 0 in all periods.
- Inflation π_{t+1} is known at the beginning of period t.
 - Fisher equation holds for short rates.
- Joint distribution of inflation and short rate next period depends on variance terms σ_i^2 , σ_{π}^2 , and $\sigma_{i,\pi}$.
- 2-period nominal and real bonds exist in fixed quantities $x^{\$}$ and x.
 - Elastic supply of one-period bonds.
- Investors have mean-variance preferences over real return on portfolio, with risk aversion $\frac{a}{2}$.
- Bond prices adjust to clear the market.

ヘロマ ふぼう くほう くほう

Bond yields

Real and nominal 2-period yields are geometric averages of expected returns:

The multipliers on $x^{\$}$ and x show how nominal and real bond quantities affect nominal and real term premia.

	4	• = • • = •	- 2	4) Q (4
Tom King (Chicago Fed)	Real yields	2 July 2022		7/21

Qualitative results

Result 1 As long as $\sigma_{i,\pi}/\sigma_{\pi}^2 > 1$, a given amount of nominal QE lowers the long-term real yield by more than the same amount of real QE does.

Nom. TP =
$$\frac{a}{2} \left[x^{\$} \sigma_i^2 + x(\sigma_i^2 - \sigma_{i,\pi}) \right]$$

Real TP = $\frac{a}{2} \left[x^{\$} (\sigma_i^2 - \sigma_{i,\pi}) + x(\sigma_i^2 - 2\sigma_{i,\pi} + \sigma_{\pi}^2) \right]$

Note that this is condition is generally satisfied if the Taylor Principle holds.

	٠	日本本國本本語大本語大	ヨー の へ	C
Tom King (Chicago Fed)	Real yields	2 July 2022	8/2	1

Qualitative results

Result 2 Nominal QE has no effect on either nominal or real yields when the long-term nominal yield is at the lower bound.

Nom. TP =
$$\frac{a}{2} \left[x^{\$} \sigma_i^2 + x(\sigma_i^2 - \sigma_{i,\pi}) \right]$$

Real TP = $\frac{a}{2} \left[x^{\$} (\sigma_i^2 - \sigma_{i,\pi}) + x(\sigma_i^2 - 2\sigma_{i,\pi} + \sigma_{\pi}^2) \right]$

• σ_i^2 and $\sigma_{i,\pi}$ are zero if we are at the ELB because of expectations.

 (If we are at the ELB because of term premia, nominal QE is completely absorbed by arbitrageurs.)

Qualitative results

Result 3 The effect of real QE on the long-term real yield is strictly negative, even when nominal yields are at their lower bound.

Nom. TP =
$$\frac{a}{2} \left[x^{\$} \sigma_i^2 + x(\sigma_i^2 - \sigma_{i,\pi}) \right]$$

Real TP = $\frac{a}{2} \left[x^{\$} (\sigma_i^2 - \sigma_{i,\pi}) + x(\sigma_i^2 - 2\sigma_{i,\pi} + \sigma_{\pi}^2) \right]$

• At the ELB, the multiplier on x for real yields is $\frac{a\sigma_{\pi}^2}{2} > 0$.

• Inflation risk premium moves by equal and opposite amount.

Quantitative Model

Monetary policy:

$$\begin{aligned} i_t &= \max[\hat{i}_t, b] \\ d\hat{i}_t &= \kappa_i (\mu_t^i - \hat{i}_t) dt + \sigma_i dZ_t^i \\ \mu_t^i &= r^* + \pi^* + \phi_{i,\pi} (\pi_t - \pi^*) + \phi_{i,g} (g_t - g^*) \end{aligned}$$

Output gap:

$$dg_t = \kappa_g(\mu_t^g - g_t)dt + \sigma_g dZ_t^g$$

$$\mu_t^g = g^* + \phi_{g,\pi}(\pi_t - \pi^*) + \phi_{g,y}(y_t^{(40)} - y^{(40)*})$$

Inflation:

$$d\pi_t = \kappa_{\pi}(\mu_t^{\pi} - \pi_t)dt + \beta dZ_t^g + \sigma_{\pi} dZ_t^{\pi}$$

$$\mu_t^{\pi} = \pi^* + \phi_{\pi,g}(g_t - g^*) + \phi_{\pi,y}(y_t^{(40)} - y^{(40)*})$$

æ

Investor optimization

Real wealth evolves according to

$$dW_{t} = \int_{0}^{T} \left[z_{t}^{\$}(\tau) \left(\frac{dP_{t}^{\$(\tau)}}{P_{t}^{\$(\tau)}} - \pi_{t} \right) + z_{t}(\tau) \frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}} \right] d\tau + \left(W_{t} - \int_{0}^{T} \left[z_{t}^{\$}(\tau) + z_{t}(\tau) \right] d\tau \right) r_{t} dt$$
(1)

Taking W_t as given, investors choose $z_t^{\$}(\tau)$ and $z_t(\tau)$ to solve

$$\max_{\{z_t^{\$}(\tau), z_t(\tau)\} \forall \tau} \mathsf{E}_t \left[dW_t \right] - \frac{a}{2} \mathsf{var}_t \left[dW_t \right]$$

subject to (1).

Image: A matrix and a matrix

12/21

Market clearing:

$$z_t^{\$}(\tau) = x_t^{\$}(\tau)$$
$$z_t(\tau) = x_t(\tau)$$

• A solution is a set of state-contingent bond prices that clears the market at each *t*.

• Assume
$$x_t^{\$}(\tau) = x^{\$}$$
 and $x_t(\tau) = x$ for all t and τ .

э

イロト イポト イヨト イヨト

Parameter values

Description	Parameter	Value	Calibrated to
Inflation target	π*	2.4%	Average long-run BC CPI forecast
Inflation inertia	$\exp(-\kappa_{\pi})$	0.51	Estimated state-space model*
Inflation response to lag 10Y real yield t	ØR.v.	-0.086	Estimated state-space model*
Inflation response to lag GDP gap	$\phi_{\pi,g}$	0.018	Estimated state-space model*
Inflation innovation std. dev.	σ_{π}	0.37%	Estimated state-space model*
Effective lower bound	b	0%	Assumed zero
Shadow rate inertia	$\exp(-\kappa_i)$	0.76	Carlstrom & Fuerst (2008)
Shadow rate target response to inflation	$\phi_{i,\pi}$	1.5	Taylor (1993)
Shadow rate target response to GDP gap	\$ the	0.5	Taylor (1993)
Shadow-rate innovation std. dev.	σ_i	0.30%	Estimated state-space model*
Output gap inertia	$\exp(-\kappa_g)$	0.87	Estimated state-space model*
Output gap response to lag 10Y real yield	Ø2.X	-0.08	Estimated state-space model*
Output gap response to lag inflation	$\phi_{g,\pi}$	0.17	Estimated state-space model*
Output gap innovation std. dev.	σg	0.56%	Estimated state-space model*
Inflation response to output gap innovation	β	0.16	Estimated state-space model*
Risk aversion	a	1	Normalization

- Taylor Rule parameters take standard values.
- Other dynamic parameters are based on estimated model over 1999 - 2020.
- Remaining parameters are calibrated to specific interest-rate scenarios.

Tom King (Chicago Fed)

Specification of three scenarios

	High rate	Moderate rate	Low rate
	(Similar to 2008-9)	(Similar to 2020)	(Hypotehtical)
Inflation (π_0)	1%	1%	1%
Output gap (g0)	-4%	-4%	-4%
Shadow rate (\hat{l}_0)	0%	0%	0%
Eq. real short rate (<i>r*</i>)	1.7%	0%	-1.7%
Nominal bond parameter (x ^{\$})	0.47	-0.03	-0.03
Real bond parameter (x)	-0.69	0.12	0.12
10y nominal yield $(y_0^{(40)})$	4.3%	1.4%	0.0%
10y real yield $(y_0^{(40)})$	1.6%	-0.6%	-1.0%

æ

Yield curve responses - baseline

High-rate scenario

Black - initial level Blue - nominal QE Red - real QE

Tom King (Chicago Fed)

Real yields

2 July 2022

16/21

Yield curve responses - baseline

Low-rate scenario

Black - initial level Blue - nominal QE Red - real QE

 Tom King (Chicago Fed)
 Real yields
 2 July 2022
 17/21

Summary of scenario analysis

	High	rate	Moderate rate (Similar to 2020)		Low rate (Hypotehtical)		
	(Similar to	o 2008-9)					
	Nom. QE	Real QE	Nom. QE	Real QE	Nom. QE	Real QE	
	shock	shock	shock	shock	shock	shock	
Initial effect on							
yields (bp)							
y\$(40)	-100	-68	-87	-54	0	0	
y ⁽⁴⁰⁾	-86	-58	-55	-38	0	-30	
10y infl. comp.	-14	-10	-32	-16	0	+30	
Dynamic effect on macro variables (bp)							
π_{10}	+29	+18	+24	+15	0	+12	
<i>π</i> 20	+28	+18	+30	+17	0	+17	
g 10	+54	+35	+30	+27	0	+22	
g20	+60	+37	+63	+36	0	+35	

2 July 2022

18/21

Э.

Inflation-indexed term lending

Economically equivalent to real QE:

- Inflation exposure transferred from gov't to private sector
- Size and real duration of CB balance sheet \uparrow

From a bank's perspective:

- Nominal interest expense rises with inflation, but interest income does not.
- Would require lower expected real rate on loan to accept this risk.
- Incentives to pass through to real sector through
 - Inflation-indexed loans
 - Derivatives
 - Purchasing inflation-hedging assets

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Inflation-indexed term lending

Advantages over negative nominal short rates:

- Can't arbitrage by hoarding cash
- No adverse effects on short-term investors (MMMFs)
- No "reversal rate" problem

In practice:

- This has to be *term* lending to be effective.
- Fed would require 13(3) authority.
- But other central banks have done nominal lending at term recently.

3

Conclusion

- Theory and evidence suggest *real* yields matter for the economy.
- If nominal yields remain low, forward guidance and nominal QE may be impotent in future recessions.
- But *real* QE—or equivalent operations—can still work.
- Macro effects of such programs might be about half as big as those of past nominal QE programs.
- Academic contributions extend no-arb model of bond supply in term structure to incorporate:
 - Inflation
 - Real/nominal bond distinction
 - ELB on nominal rates
 - Real activity
 - Monetary policy rule
 - Feedback from yields to economy
 - Realistic parameter values

Thanks!

3

< 日 > < 同 > < 回 > < 回 > < □ > <